Elements and Assemblies

Watlow tubular elements and assemblies are primarily used for direct immersion in water, oils, viscous materials, solvents, process solutions and molten materials as well as air and gases.

Additionally, round and flat surface tubular elements (WATROD and FIREBAR® heaters respectively) can be used for surface heating.

WATROD and FIREBAR heating elements may be purchased separately, or fabricated into process heating assemblies, including:

- · Screw plug
- Flange
- Circulation
- Booster
- · Engine Preheater
- · Over-the-Side
- Vertical Loop
- Drum
- Duct

Both elements and assemblies are available from stock. They can be configured with a variety of watt and volt ratings, terminations, sheath materials and mounting options to satisfy the most demanding applications.

If our stock products do not meet your application needs, Watlow can custom engineer the optimum heater.

Performance Capabilities

- Sheath temperatures up to 1800°F (983°C)
- Assembly wattages to 2.2 megawatts
- Process assembly ratings up to 1000 psi (70 kg/cm²)
- Watt densities up to 120 W/in² (18.6 W/cm²)

Assemblies, left to right: WATROD duct, WATROD screw plug, circulation and FIREBAR flange heater. WATROD and FIREBAR elements are in front.

 Enhanced performance beyond these specifications available from Watlow Process Systems.

Features and Benefits

- 36 standard bend formations enable designing the heating element around available space to maximize heating efficiency.
- FIREBAR flat surface geometry enhances heat transfer in both immersion and air applications, and surface heating, too.
 Increased surface area per linear inch allows heaters to run cooler in viscous materials.

 Wattages from 95 watts to 2.2 megawatts (on individual elements and assemblies respectively) make tubular heaters one of the most versatile electric heating sources available.

Applications

- · Liquids
- Air
- Gases
- · Molten materials
- Contact surface heating
- Radiant surface heating

① Watlow Process Systems can design thermal systems to meet specific performance criteria. Contact your Watlow representative for details.

Elements and Assemblies

The following two charts will help you select an appropriate heater based on your application and watt density restrictions. These charts are application driven. The total wattage required by your application should be known before selecting a specific heater type(s) from the stock tables. If your required wattage is not known, please consult your Watlow representative. Once the heater type has been identified, turn to the appropriate product section for information on the element or assembly.

Element and Assembly Selection Guide

To identify the tubular heater type best suited to your application, consult the *Element and Assembly Selection Guide*.

In most cases Watlow recommends using single tubular heating elements for low kilowatt applications.

Assemblies are better suited for large kilowatt applications to heat liquids, air or gases.

When selecting a heater according to watt density, be sure to consider the following:

- Liquid viscosity at start up and at process temperature
- · Operating temperature
- · Chemical composition

Under the "**Heating Method**" column in the *Element and Assembly Selection Guide* locate the method that applies to your application to find the recommended "Heater Type."

After identifying the heater type(s) suitable for your application, refer to the *Supplemental Applications Chart* for further application data. This chart will assist you in selecting the appropriate watt density and sheath material for your specific application. It also presents the performance characteristics for both WATROD and FIREBAR elements.

Element and Assembly Selection Guide

Application	Heating Method	Heater Type
iquids:		
Acids	Direct immersion (circulating/non-circulating)	FIREBAR, WATROD, Screw Plug, Flange, Over-the-Side, Vertical Loop, and Pipe Insert
Caustic Soda 12% Concentrate 10% Concentrate 75% Concentrate	Direct immersion (circulating/non-circulating)	WATROD, Screw Plug, Square Flange, Flange, Over-the-Side, Vertical Loop, Circulation, and Pipe Insert
Degreasing Solutions	Direct immersion (circulating/non-circulating)	FIREBAR, WATROD, Screw Plug, Square Flange, Flange, Over-the-Side, and Pipe Insert
Electroplating	Direct immersion (circulating/non-circulating)	FIREBAR, WATROD, Screw Plug, Square Flange, Flange, Over-the-Side, Drum, Vertical Loop and Pipe Insert
Ethylene Glycol 50% Concentrate 100% Concentrate	Direct immersion (circulating/non-circulating)	FIREBAR, WATROD, Screw Plug, Flange, Over-the-Side, Circulation, Booster, and Engine Preheater
Oils Asphalt Fuel Oils Light Grades 1 & 2 Medium Grades 4 & 5 Heavy Grade 6 & Bunker C Heat Transfer Lubricating SAE 10, 20, 30 SAE 40, 50 API STD 614 Vegetable (Cooking)	Direct immersion (circulating/non-circulating)	FIREBAR, WATROD, Screw Plug, Square Flange, Flange, Over-the-Side, Drum, Vertical Loop, Circulation, Booster, and Pipe Insert
Paraffin or Wax	Direct immersion (circulating/non-circulating)	FIREBAR, WATROD, Screw Plug, Square Flange, Flange, Over-the-Side, Drum, and Pipe Insert

CONTINUED

Elements and Assemblies Element and Assembly Selection Guide

Application	Heating Method	Heater Type
Water		
Clean	Direct immersion (circulating/non-circulating)	FIREBAR (non-process water only)
Deionized		WATROD, Screw Plug, Screw Plug with Control Assembly,
Demineralized		Square Flange, Flange, Over-the-Side, Drum, Vertical Loop,
Potable		Circulation, Booster, Engine Preheater and Pipe Insert
Process		
Air:	Direct (forced or natural convection)	FIREBAR, WATROD, FINBAR, WATROD Enclosure Heater,
		Screw Plug, Flange, Circulation, and Duct
Gas:	Direct (forced)	FIREBAR, WATROD, Screw Plug, Flange, and Circulation
Hydrocarbons, Nitrogen, Oxygen		
Ozone, Steam		
Molten Materials:		
Aluminum	Indirect (radiant)	WATROD
Lead	Direct (non-circulating)	FIREBAR and WATROD
Salt	Direct (non-circulating)	FIREBAR and WATROD
Solder	Direct (non-circulating)	FIREBAR and WATROD
Surface Heating:		
Dies, Griddles, Molds, Platens	Direct	FIREBAR and WATROD

Supplemental Applications Chart

This Supplemental Applications
Chart is provided in addition to the
Element and Assembly Selection
Guide. This chart will help you
select watt density and sheath

materials for either WATROD or FIREBAR heating elements according to the specific media being heated.

For example, if you're heating

vegetable oil, either WATROD or FIREBAR elements at 30 and 40 watts per square inch respectively (4.6 and 6.2 W/cm²) with 304 stainless steel sheath can be used.

Supplemental Applications Chart

				WATRO	D Element	FIREBAR Element				
	Maximum Operating Temperature °F (°C)			imum /att			imum 'att			
Heated Material			Density		Sheath Material	Der	nsity	Sheath Material		
			W/in ² (W/cm ²)			W/in ²	(W/cm ²)			
cid Solutions (Mild)					,					
Acetic	180	(82)	40	(6.2)	316 Stainless Steel	40	(6.2)	Incoloy® 800		
Boric (30% max.)	257	(125)	40	(6.2)	Titanium	40	(6.2)	304 Stainless Steel		
Carbonic	180	(82)	40	(6.2)	Inconel® 600	40	(6.2)	304 Stainless Steel		
Chromic	180	(82)	40	(6.2)	Titanium	N/A	N/A	N/A		
Citric	180	(82)	23	(3.6)	Incoloy®	30	(4.6)	Incoloy® 800		
Fatty Acids	150	(65)	20	(3.1)	316 Stainless Steel	30	(4.6)	Incoloy® 800		
Lactic	122	(50)	10	(1.6)	316 Stainless Steel	N/A	N/A	N/A		
Levulinic	180	(82)	40	(6.2)	Inconel® 600	40	(6.2)	304 Stainless Steel		
Malic	122	(50)	10	(1.6)	316 Stainless Steel	16	(2.5)	Incoloy® 800		
Nitric (30% max.)	167	(75)	20	(3.1)	316 Stainless Steel	30	(4.6)	Incoloy® 800		
Phenol—2-4										
Disulfonic	180	(82)	40	(6.2)	316 Stainless Steel	40	(6.2)	Incoloy® 800		
Phosphoric	180	(82)	23	(3.6)	Incoloy®	30	(4.6)	Incoloy® 800		
Phosphoric (Aerated)	180	(82)	23	(3.6)	304 Stainless Steel	30	(4.6)	304 Stainless Stee		

Incoloy® and Inconel® are registered trademarks of Special Metals Corporation.

Elements and Assemblies

Supplemental Applications Chart

				WATRO	D Element	FIREBAR Element			
Heated Material	Maxin Opera Temper	ting rature	V De	cimum Vatt nsity	Sheath Material	Maxim Wat Dens	t	Sheath Material	
	°F	(°C)	W/in ²	(W/cm²)		W/in ²	(W/cm ²)		
Proponic (10% max.) Tannic	180 167/180	(82) (75/82)	40 23/40	(6.2) (3.6/6.2)	Copper Steel/304 S. Steel	40 40	(6.2) (6.2)	304 Stainless Steel 304 Stainless Steel	
Tartaric	180	(82)	40	(6.2)	316 Stainless Steel	40	(6.2)	Incoloy® 800	
Acetaldehyde Acetone Air	180 130 ①	(82) (54) ①	10 10 ①	(1.6) (1.6)	Copper 304 Stainless Steel Incoloy®	16 16 ①	(2.4) (2.4) ①	Incoloy® 800 304 Stainless Steel Incoloy® 800	
Alcyl Alcohol Alkaline Solutions	200 212	(93) (100)	10 40	(1.6) (6.2)	Copper Steel	16 48	(2.4) (7.4)	Incoloy® 800 304 Stainless Steel	
Aluminum Acetate Aluminum Potassium	122	(50)	10	(1.6)	316 Stainless Steel	16	(2.5)	Incoloy® 800	
Sulfate	212	(100)	40	(6.2)	Copper	N/A	N/A	N/A	
Ammonia Gas Ammonium Acetate	① 167	① (75)	① 23	① (3.6)	Steel Incoloy®	① 30	① (4.6)	304 Stainless Steel Incoloy® 800	
Amyl Acetate Amyl Alcohol Aniline Asphalt	240 212 350 200-500	(115) (100) (176) (93-260)	23 20 23 4-10	(3.6) (3.1) (3.6) (0.6 - 1.6)	Incoloy® 304 Stainless Steel 304 Stainless Steel Steel	30 30 30 6-12	(4.6) (4.6) (4.6) (0.9 - 1.8)	Incoloy® 800 304 Stainless Steel 304 Stainless Steel 304 Stainless Steel	
Barium Hydroxide	212	(100)	40	(6.2)	316 Stainless Steel	40	(6.2)	Incoloy® 800	
Benzene, liquid Butyl Acetate Calcium Bisulfate	150 225 400	(65) (107) (204)	10 10 20	(1.6) (1.6) (3.1)	Copper 316 Stainless Steel 316 Stainless Steel	16 16 N/A	(2.5) (2.5) N/A	304 Stainless Steel Incoloy® 800 N/A	
Calcium Chloride Carbon Monoxide	200 —	(93)	5-8 ①	(0.8 - 1.2)	Inconel® 600 Incoloy®	N/A ①	N/A	N/A Incoloy®	
Carbon Tetrachloride Caustic Soda:	160	(71)	23	(3.6)	Incoloy®	30	(4.6)	Incoloy®	
2%	210	(98)	48	(7.4)	Incoloy®	_	_	Consult factory	
10% Concentrate 75%	210 180	(98) (82)	23 23	(3.6) (3.6)	Incoloy® Incoloy®	_	_	Consult factory Consult factory	
Citric Juices Degreasing Solution	185 275	(85) (135)	23 23	(3.6) (3.6)	Incoloy® Steel	30 30	(4.6) (4.6)	Incoloy® 304 Stainless Steel	
Dextrose	212 212	(100) (100)	20 23	(3.1) (3.6)	304 Stainless Steel 304 Stainless Steel	30 30	(4.6) (4.6)	304 Stainless Steel 304 Stainless Steel	
Dyes & Pigments Electroplating Baths:	212	(100)	۷۵	(3.0)	JU4 Glaimess Gleel		(4.0)	JUH GLAII IIESS GLEEI	
Cadmium	180	(82)	40	(6.2)	304 Stainless Steel	40	(6.2)	304 Stainless Steel	
Copper	180	(82)	40	(6.2)	316 Stainless Steel	N/A	(6.2) N/A	N/A	
Dilute Cyanide	180	(82)	40	(6.2)	316 Stainless Steel	N/A	N/A	N/A	
Rochelle Cyanide	180	(82)	40	(6.2)	316 Stainless Steel	N/A	N/A	N/A	
Sodium Cyanide	180	(82)	40	(6.2)	316 Stainless Steel	N/A	N/A	N/A	
Potassium Cyanide	180	(82)	40	(6.2)	316 Stainless Steel	40	(6.2)	304 Stainless Steel	
Ethylene Glycol	300	(148)	30	(4.6)	Steel	40	(6.2)	304 Stainless Stee	
Formaldehyde	180	(82)	10	(1.6)	304 Stainless Steel	16	(2.5)	304 Stainless Stee	
		. ,		` '					
Freon® Gas	300	(148)	2-5	(0.3 - 0.8)	Steel	1	1	304 Stainless Steel	

① Consult your Watlow representative.
 Freon® is a registered trademark of
 E.I. du Pont de Nemours and Company.

Elements and Assemblies

Supplemental Applications Chart

				WATRO	D Element		FIREBAR	R Element
Heated Material	Maxi Oper Tempe °F	ating	V	imum /att nsity (W/cm²)	Sheath Material	١ ١	ximum Vatt ensity (W/cm²)	Sheath Material
Gelatin Liquid Gelatin Solid Glycerin Glycerol	150 150 500 212	(65) (65) (260) (100)	23 5 10 23	(3.6) (0.8) (1.6) (3.6)	304 Stainless Steel 304 Stainless Steel Incoloy® Incoloy®	30 7 12 30	(4.6) (1.0) (1.9) (4.6)	304 Stainless Steel 304 Stainless Steel 304 Stainless Steel 304 Stainless Steel
Grease: Liquid Solid	_	_	23 5	(3.6) (0.8)	Steel Steel	30 7	(4.6) (1.0)	304 Stainless Steel 304 Stainless Steel
Hydrazine Hydrogen Hydrogen Chloride Hydrogen Sulfide	212 ① ① ①	(100) ① ① ①	16 — — —	(2.5) — — —	304 Stainless Steel Incoloy® Inconel® 600 316 Stainless Steel (heavy wall)	20 ① ①	(3.1) ① ①	304 Stainless Steel Incoloy® 800 N/A
Magnesium Chloride Magnesium Sulfate Magnesium Sulfate Methanol Gas Methylamine	212 212 212 ① 180	(100) (100) (100) ① (82)	40 40 40 — 20	(6.2) (6.2) (6.2) — (3.1)	Inconel® 600 304 Stainless Steel 316 Stainless Steel 304 Stainless Steel Inconel® 600	40 40 40 ① 30	(6.2) (6.2) (6.2) ① (4.6)	Incoloy® 800 304 Stainless Steel 304 Stainless Steel 304 Stainless Steel 304 Stainless Steel
Methychloride Molasses Molten Salt Bath Naphtha	180 100 800-900 212	(82) (37) (426-482) (100)	20 4-5 25-30 10	(3.1) (0.6 - 0.8) (3.8 - 4.6) (1.6)	Copper 304 Stainless Steel Monel® Steel	N/A 5-8 N/A 16	N/A (0.8 - 1.2) N/A (2.5)	N/A 304 Stainless Steel N/A 304 Stainless Steel
Oils		(/		(-/			(- /	
Fuel Oils:								
Grades 1 & 2 (distillate) Grades 4 & 5	200	(93)	23	(3.6)	Steel	30	(4.6)	304 Stainless Steel
(residual) Grades 6 & Bunker C	200	(93)	13	(2.0)	Steel	16 10	(2.5)	304 Stainless Steel
(residual) Heat Transfer Oils: ②	160	(71)	8	(1.2)	Steel	10	(1.6)	304 Stainless Steel
Static Circulating	500 600 500 600	(260) (315) (260) (315)	16 10 23 15	(2.5) (1.6) (3.6) (2.3)	Steel Steel Steel Steel	23 16 30 20	(3.6) (2.5) (4.6) (3.1)	304 Stainless Steel 304 Stainless Steel 304 Stainless Steel 304 Stainless Steel
Lubrication Oils:		` '		, ,			, ,	
SAE 10, 90-100 SSU @ 130°F SAE 20, 120-185	250	(121)	23	(3.6)	Steel	30	(4.6)	304 Stainless Steel
SSU @ 130°F SAE 30, 185-255 SSU @ 130°F	250 250	(121) (121)	23 23	(3.6)	Steel Steel	30 30	(4.6) (4.6)	304 Stainless Steel 304 Stainless Steel
SAE 40, -80 SSU @ 210°F	250	(121)	13	(2.0)	Steel	18	(2.7)	304 Stainless Steel
SAE 50, 80-105 SSU @ 210°F	250	(121)	13	(2.0)	Steel	18	(2.7)	304 Stainless Steel
Miscellaneous Oils:	200	(121)	10	(2.0)	0.001	1.0	(2.1)	OF Claimos Olooi
Draw Bath Hydraulic Linseed Mineral	600 — 150 200 400	(315) — (65) (93) (204)	23 15 ³ 50 23 16	(3.6) (2.3) (7.7) (3.6) (2.5)	Steel Steel Steel Steel Steel	30 15 ³ 60 30 23	(4.6) (2.3) (9.3) (4.6) (3.6)	304 Stainless Steel 304 Stainless Steel 304 Stainless Steel 304 Stainless Steel 304 Stainless Steel
Vegetable/Shortening	400	(204)	30	(4.6)	304 Stainless Steel	40	(6.2)	304 Stainless Steel

CONTINUED

② Maximum operating temperatures and watt densities are detailed in Heat Transfer Oil charts on page 265.

Elements and Assemblies

Supplemental Applications Chart

				WATRO) Element		FIREBAF	R Element
Heated Material	Maximum Operating Temperature °F (°C)		Maxi Wa Den W/in ²	att	Sheath Material	Maxir Wa Dens W/in ²	itt	Sheath Material
Paraffin or Wax (liquid)	150	(65)	16	(2.4)	Steel	20	(3.1)	304 Stainless Steel
Perchloroethylene	200	(93)	23	(3.6)	Steel	30	(4.6)	304 Stainless Steel
Potassium Chlorate	212	(100)	40	(6.2)	316 Stainless Steel	N/A	N/A	N/A
Potassium Chloride	212	(100)	40	(6.2)	316 Stainless Steel	N/A	N/A	N/A
Potassium Hydroxide	160	(71)	23	(3.6)	Monel®	N/A	N/A	N/A
Soap, liquid	212	(100)	20	(3.1)	304 Stainless Steel	30	(4.6)	304 Stainless Steel
Sodium Acetate	212	(100)	40	(6.2)	Steel	50	(7.7)	304 Stainless Steel
Sodium Cyanide	140	(60)	40	(6.2)	Incoloy®	50	(7.7)	Incoloy® 800
Sodium Hydride	odium Hydride 720 (382)		28	(4.3)	Incoloy®	36	(5.5)	Incoloy® 800
Sodium Hydroxide	_	_	_	_	See Caustic Soda	_	_	_
Sodium Phosphate	212	(100)	40	(6.2)	Copper	50	(7.7)	304 Stainless Steel
Steam, flowing	300	(148)	10	(1.6)	Incoloy®	1	1	Incoloy® 800
_	500	(260)	5-10	(0.8-1.6)	Incoloy®	1	1	Incoloy® 800
	700	(371)	5	(0.8)	Incoloy®	1	1	Incoloy® 800
Sulfur, Molten	600	(315)	10	(1.6)	Incoloy®	12	(1.8)	Incoloy® 800
Toluene	212	(100)	23	(3.6)	Steel	30	(4.6)	304 Stainless Steel
Trichlorethylene	150	(65)	23	(3.6)	Steel	30	(4.6)	304 Stainless Steel
Turpentine	300	(148)	20	(3.1)	304 Stainless Steel	25	(3.8)	304 Stainless Steel
Water								
Clean	212	(100)	60	(9.3)	Incoloy®	45	(7)	Incoloy® 800
Deionized	212	(100)	60	(9.3)	316 SS (passivated)	90	(14)	Incoloy® 800
Demineralized	212	(100)	60	(9.3)	316 SS (passivated)	90	(14)	Incoloy® 800
Potable	212	(100)	60	(9.3)	Incoloy®	45	(7)	Incoloy® 800
Process	212	(100)	48	(9.3)	Incoloy®			Consult factory

① Consult your Watlow representative.

Free Cross Sectional Area of WATROD and FIREBAR Circulation Heaters

Free cross sectional areas from the chart are in square feet.
Calculations are based on:

- Flange 12 inches and under, pipes are schedule 40
- Flanges 14 inches and above, pipes are standard wall thickness (0.375 inch/9.5 mm)
- All WATROD heating elements are 0.475 inch diameter (12 mm)

Circulation Heater Size Inches	F	Free Cross Sectional Area in Square Feet (Number of Elements in Parenthesis)											
WATROD													
2½ NPT	0.044	(3)											
3 Flange	0.044	(3)	0.037	(6)									
4 Flange	0.074	(6)											
5 Flange	0.124	(6)	0.117	(9)									
6 Flange	0.172	(12)	0.164	(15)									
8 Flange	0.303	(18)	0.296	(21)	0.288	(24)							
10 Flange	0.481	(27)	0.460	(36)									
12 Flange	0.697	(36)	0.652	(54)									
14 Flange	0.848	(45)	0.781	(72)									
16 Flange	1.091	(72)	1.054	(87)	1.017	(102)							
18 Flange	1.372	(102)	1.357	(108)	1.342	(114)							
20 Flange	1.748	(108)	1.733	(114)	1.704	(126)							
FIREBAR													
2½ NPT	0.0417	(3)											
4 Flange	0.0692	(6)											
6 Flange	0.154	(15)											

Elements and Assemblies

Heat Transfer Oil Chart

	Maxim	Recom				Fla	ammabili	ty Data °l	F (°C)			in Fee		num Veloond nd at W/ir			N/cm²)	
Heat Transfer	Pro	ocess	S	heath	Flash	Point	Fire	Point	Autoig	nition	8	(1.2)	16	(2.8)	23	(3.6)	30	(4.7)
Fluid	F	(°C)	°F	(°C)	°F	(°C)	°F	(°C)	°F	(°C)	W/in²	(W/cm²)	W/in²	(W/cm ²)	W/in²	(W/cm ²)	W/in²	(W/cm²)
Calflo HTF	600	(316)	650	(343)	414	(212)	462	(239)	670	(354)	1.5	(0.5)	3	(0.9)	5	(1.52)	7	(2.1)
Calflo AF	550	(288)	600	(316)	400	(204)	437	(225)	650	(343)	1.5	(0.5)	3	(0.9)	5	(1.52)	7	(2.1)
Caloria HT-43	600	(316)	680	(360)	400	(204)	no data	no data	670	(354)	1.5	(0.5)	2.5	(0.75)	3	(0.9)	4	(1.22)
Dow therm® A	750	(399)	835	(446)	255	(124)	275	(135)	1150	(621)	0.5	(0.15)	1	(0.3)	2	(0.61)	3	(0.9)
Dow therm® G	700	(371)	775	(413)	305	(152)	315	(157)	1150	(621)	0.7	(0.2)	1.5	(0.5)	2.5	(0.75)	3.5	(1.1)
Dow therm® J	575	(302)	650	(343)	145	(63)	155	(68)	806	(430)	1	(0.3)	2	(0.61)	3	(0.9)	4.5	(1.37)
Dow therm® LF	600	(316)	675	(357)	260	(127)	280	(138)	1020	(549)	0.7	(0.2)	1.5	(0.5)	2.5	(1.75)	3.5	(1.1)
Dow therm® HT	650	(343)	700	(371)	no data i	no data	no data	no data	no data	no data	1.5	(0.5)	2.5	(0.75)	3.5	(1.1)	5	(1.52)
Dow therm® Q	625	(329)	700	(371)	no data i	no data	no data	no data	773	(412)	0.7	(0.2)	1.5	(0.5)	2.5	(0.75)	3.5	(1.1)
Marlotherm S	662	(350)	698	(370)	374	(190)	no data	no data	932	(500)	1.5	(0.5)	3	(0.9)	5	(1.52)	7	(2.1)
Mobiltherm 603	590	(310)	625	(329)	380	(193)	no data	no data	no data	no data	1.5	(0.5)	3	(0.9)	5	(1.52)	7	(2.1)
Multitherm IG-2	600	(316)	650	(343)	440	(227)	500	(260)	700	(371)	0.8	(0.24)	1.7	(0.52)	2.3	(0.7)	3	(0.9)
Multitherm PG-1	600	(316)	640	(338)	340	(171)	385	(196)	690	(368)	1	(0.3)	2	(0.61)	3	(0.9)	4	(1.22)
Para Cymene	600	(316)	650	(343)	117	(47)	152	(72)	817	(438)	0.7	(0.2)	1.5	(0.5)	2.5	(0.75)	3.5	(1.1)
Syltherm 800	750	(399)	800	(427)	350	(177)	380	(193)	725	(385)	1.5	(0.5)	3	(0.9)	5	(1.52)	7	(2.1)
Syltherm XLT	500	(260)	550	(288)	116	(47)	130	(54)	662	(350)	1.5	(0.5)	2.5	(0.75)	4	(1.22)	5	(1.52)
Texatherm	600	(316)	640	(338)	430	(221)	no data	no data	no data	no data	2	(0.61)	4	(1.22)	6	(1.83)	8	(2.4)
Thermia 33	600	(316)	650	(343)	455	(235)	495	(257)	no data	no data	1.5	(0.5)	3	(0.9)	5	(1.52)	7	(2.1)
Therminol 44	400	(204)	475	(246)	405	(207)	438	(228)	705	(374)	1	(0.3)	2	(0.61)	3	(0.9)	4	(1.22)
Therminol 55	550	(288)	605	(318)	350	(177)	410	(210)	675	(357)	1.5	(0.5)	2.5	(0.75)	3.5	(1.1)	5	(1.52)
Therminol 59	600	(316)	650	(343)	302	(150)	335	(168)	770	(410)	1.5	(0.5)	2.5	(0.75)	3.5	(1.1)	5	(1.52)
Therminol 60	620	(327)	655	(346)	310	(154)	320	(160)	835	(448)	1.5	(0.5)	3	(0.9)	5	(1.52)	7	(2.1)
Therminol 68	650	(343)	705	(374)	350	(177)	380	(183)	705	(374)	1.5	(0.5)	2.5	(0.75)	3	(0.9)	4.5	(1.37)
Therminol 75	750	(399)	805	(429)	390	(199)	440	(227)	1000	(538)	1	(0.3)	2	(0.61)	3	(0.9)	4	(1.22)
Therminol LT	600	(316)	650	(343)	134	(57)	150	(66)	805	(429)	1.5	(0.5)	2.5	(0.75)	4	(1.22)	5	(1.52)
Therminol VP-1	750	(399)	800	(427)	255	(124)	280	(127)	1150	(621)	1	(0.3)	2	(0.61)	3	(0.9)	4	(1.22)
U-Con 500	500	(260)	550	(288)	540	(282)	600	(316)	750	(399)	1	(0.3)	2	(0.61)	3	(0.9)	4	(1.22)

Elements and Assemblies

Agency Recognition

UL® and CSA recognition information charts are provided to ensure:

- Safety parameters in relationship to stated voltage and amperage
- Approved sheath materials, end seals and assembly electrical enclosures

Watlow believes that UL® and CSA recognition information is necessary to confirm the reliability of our heating products in relationship to your application. As such, the accompanying Agency Recognition charts illustrate the extent of coverage each heater type

provides. Specific end use application information is required for each agency marking. Some products carry U.S. and Canada approvals.

UL® Recognition and Listing

File Number E52951 (UL 499) — Component Recognition
All information for UL file #E52951 can be found in the UL® Directory, Volume I, under "Heaters Miscellaneous" (Classification KSOT2).

Elements

WAT Diam		Code Number						Number		Number												Max.	Max		. Watt nsity		Bend dius	Allowable Sheath	End Seal
inch	(mm)	Designat	tion	Volts	Amps	W/in²	W/cm ²	inch	(mm)	Materials	Types																		
0.210	(6.0)		U0-xx	250	15	N/A	N/A	1/16	(2)	Aluminum,																			
0.260	(6.6)	RA series	U1-xx	250	15	N/A	N/A	1∕46	(2)	Copper,	Epoxy resin,																		
0.315	(8.0)	RB series	U3-xx	480	30	N/A	N/A	1∕46	(2)	Incoloy®,	Lavacone,																		
0.335	(8.5)		UE-xx	480	30	N/A	N/A	3∕16	(5)	Inconel®,	Silicone resin,																		
0.375	(9.5)	RD, RS series	U5-xx	480	30	N/A	N/A	3∕16	(5)	Stainless steel,	Silicone rubber,																		
0.430	(10.9)	RC series	U6-xx	600	40	N/A	N/A	5/32	(4)	Steel,	Glass,																		
0.475	(12.0)	RG series	U7-xx	600	40	N/A	N/A	3∕16	(5)	Titanium,	ULTRAGARD,																		
0.490	(12.4)		U8-xx	600	40	N/A	N/A	3∕16	(5)	Special Request	SF 99																		
0.625	(15.9)		U9-xx	600	40	N/A	N/A	⁷ / ₁₆	(11)																				

	REBAR® Height	Code Number	Max.	Max.		. Watt	Min. Bene Major Axis		Allowable Sheath	End Seal
	nch (mm)	Designation	Volts	Amps		W/cm ²	1 1	inch (mm)		Types
Air	or Immers	ion Heating								
1	(16) (25.4)	FA, FS series A-xx FB, FS series	250 250	N/A N/A	33 33	(5.1) (5.1)	1 (25) 1 (25)	½ (13) ½ (13)	Incoloy® Stainless steel Titanium	Epoxy resin Lavacone Silicone resin Silicone rubber ULTRAGARD
Liqu		sion Heating Only								
1	(16) (25.4)	FA, FS series U-xx FB, FS series	480 480	N/A N/A	160 160	(24.7) (24.7)	1 (25) 1 (25)	¼ ₆ (2) ¼ ₆ (2)	Incoloy® Stainless steel Titanium	Epoxy resin Lavacone Silicone resin Silicone rubber ULTRAGARD

Note: UL® and CSA must be requested at the time the order is placed.

UL® is a registered trademark of the Underwriter's Laboratories, Inc.

Elements and Assemblies

Assemblies

Refer to applicable WATROD and FIREBAR elements for maximum voltage, watt density and sheath materials.

Heater Type	Code Number Designations	Electrical Enclosure Options
Screw Plug	All catalog " B " models Series U1 to U9	General purpose with or without thermostat
Flange	All catalog models FE, FG, FH, FK, FL, FM, FN, FO, FP FR, FS, FT, FW—Series U1 to U9	General purpose with or without thermostat
Circulation	All catalog models CB , CF , CP Series U1 to U9	General purpose with or without thermostat
Over-the-Side	All catalog "OL," "OR" and "VL" models Series U1 to U9, except U2 and U4	Moisture resistant with or without thermostat
Duct	All catalog " D6 to D125 " models Series U1 to U9 , except U2 and U4	General purpose enclosure only (Incoloy® sheath only)

File Number E56488 (UL 1030)—Water Immersion Only (Classification UBJY2). — Component Recognition Elements

	WATROD Code Diameter Number		Max.	Max		. Watt nsity		Bend dius	Allowable Sheath	End Seal
inch	(mm)	Designation	Volts	Amps	W/in ²	W/cm ²	inch	(mm)	Materials	Types
0.315	(8.0)		480	7	120	(18.5)	1∕⁄8	(3)		
0.375	(9.5)		480	7	120	(18.5)	1/⁄8	(3)	Copper	Ероху
0.430	(10.9)	T series	575	7	120	(18.5)	5/1.6	(8)	Incoloy®	RTV
0.475	(12.0)	Example: T085CN3S	575	7	120	(18.5)	5,46	(8)	Stainless steel	Silicone
0.490	(12.4)		575	7	120	(18.5)	546	(8)		
0.625	(15.9)		575	7	120	(18.5)	5∕16	(8)		

	FIREBAR® Height inch (mm)		Code			Max	Max. Watt		Bend	Allowable	End	
			Number M		Max. Max.		Density		Minor Axis	Sheath	Seal	
			Designation	Volts	Amps	s W/in ² W/cm ²		inch (mm	inch (mm)	Materials	Types	
Γ	1	(25.4)	T series	250	N/A	80	(12.4)	1 (25)	5⁄ ₃₂ (4)	Incoloy®	Ероху	
			Example: T085HN3W							Stainless steel	RTV	
											Silicone	

Assemblies

Refer to applicable WATROD and FIREBAR elements for maximum voltage, watt density and sheath materials.

Heater Type	Code Number Designations	Electrical Enclosure Options
Screw Plug	Models T3 , T5 , T6 , T7 , T8 , T9 Example: T336xxxx	General purpose without thermostat
Flange	Models T3 , T5 , T6 , T7 , T8 , T9 Example: T621xxxx	General purpose without thermostat

Note: UL® and CSA must be requested at the time the order is placed.

Elements and Assemblies

File Number MH26554 (UL 574)—Electric Oil Heaters (Classification MDST2).

— Component Recognition or Listing (Consult factory if UL® Listed marking is desired)

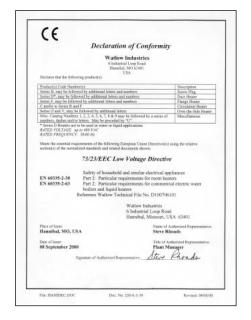
Elements

For reference only, marking applies only to assemblies noted below.

WATROD Diameter		Code Number		Max.	Max	Max. Watt Density		Min. Bend Radius		Allowable Sheath	End Seal
inch	(mm)	Desi	gnation	Volts	Amps	W/in ²	W/cm ²	inch	(mm)	Materials	Types
0.260	(6.6)	series	1-xx	250	15	23	(3.56)	1∕1,6	(2)	Steel, Inconel®	Epoxy resin, silicone resin
0.315	(8.0)	series	3-xx	480	30	23	(3.56)	1∕16	(2)	Stainless steel	Silicone rubber
0.375	(9.5)	series	5-xx	480	30	23	(3.56)	3∕16	(5)	Incoloy®	Lavacone
0.430	(10.9)	series	6-xx	600	40	23	(3.56)	5/32	(4)	Monel®	ULTRAGARD
0.475	(12.0)	series	7-xx	600	40	23	(3.56)	³∕₁6	(5)		
0.490	(12.4)	series	8-xx	600	40	23	(3.56)	³∕₁6	(5)	Hastelloy®	
0.625	(15.8)	series	9-xx	600	40	23	(3.56)	7∕16	(11)	Titanium	

Assemblies

Refer to applicable WATROD elements for maximum voltage, watt density and sheath materials.


Heater Type	Code Number Designations	Electrical Enclosure Options
Screw Plug	Models BCS and BGS	Enclosure Types 1 or 4, with or without
	series 1-xx thru 9-xx , excluding	thermostat. Thermostat shall be
	series 2-xx and 4-xx	Watlow Type 4, 12 or 12A

Note: UL® and CSA must be requested at the time the order is placed.

Declaration of Conformity

The Low Voltage Directive (LVD) (73/23/EEC) states that electrical and electronic equipment placed on the market in the European Union (EU) must be safe. The CE Marketing Directive (93/68/EEC) for the LVD came into force on January 1, 1995, subject to a two-year transition period. All heaters operating on a supply voltage of between 50 and 1000V~(ac), and between 75 and 1500V···(dc) fall within the scope of the LVD.

The Self Declaration of Conformity shown on the right, backed by our risk assessment and technical file, assure that the product series shown on the Declaration meet the EU requirements. The Declaration is not applicable to any of our heaters intended for use in an explosive atmosphere, or for radiological and medical purposes.

Hastelloy® is a registered trademark of Haynes International.

Elements and Assemblies

CSA Certification

File Number LR 31388

All information for CSA file LR 31388 can be found in the CSA *List of Certified Electrical Equipment* catalog, Volume II, under Heaters—Miscellaneous.

Elements

	ter Type— eter/Height	Code Number Designation	Max. Volts		c. Watt nsity	Allowable Sheath	End Seal Type
inch	(mm)			W/in ²	(W/cm ²)	Materials ⁽¹⁾	(All Diameters)
WATRO	D:						
0.260	(6.6)	All catalog models, 1-xx	600	120	(18.5)	Copper	
0.315	(8.0)	All catalog models, 3-xx	600	120	(18.5)	Incoloy®	Epoxy resin,
0.375	(9.5)	All catalog models, 5-xx	600	120	(18.5)	Stainless steel	Lavacone,
0.430	(10.9)	All catalog models, 6-xx	600	120	(18.5)	Steel	Silicone resin,
0.475	(12.0)	All catalog models, 7-xx	600	120	(18.5)	Titanium	Silicone rubber
0.490	(12.4)	All catalog models, 8-xx	600	120	(18.5)	Special request	ULTRAGARD
0.625	(15.9)	All catalog models, 9-xx	600	120	(18.5)		
FIREBA	R:						
5⁄8	(15.9)	FA, FS models, 4-xx	480	120	(18.5)	Incoloy®	Epoxy resin,
1	(25.4)	FB, FS models, 2-xx	480	120	(18.5)	Stainless steel	Lavacone,
						Titanium	Silicone resin,
							Silicone rubber

Note: Heating elements are certified only for use in equipment where the acceptability of the construction combination is determined by the Canadian Standards Association.

Assemblies

Heater Type	Code Number Designations	Electrical Enclosure Options
Screw Plug	All catalog "B" models Series 1-xx to 9-xx	General purpose with or without thermostat Enclosure 4 with or without thermostat
Flange	All catalog models FM , FN , FO , FP , FR , FS , FT , FW Series 1-xx to 9-xx	General purpose with or without thermostat *Enclosure 4 with or without thermostat
Circulation	All catalog models CBD, CBE, CBL, CFM, CFN, CFO, CFP, CFR, CFS, CFT, CFW—Series 1-10 to 9-10	General purpose with or without thermostat *Enclosure 4 with or without thermostat
Over-the-Side	All catalog " OL " and " OR " models Series 1-30 to 9-30	Enclosure 4 with or without thermostat
Duct	All catalog " D " and " MDH " models Series 1-1 to 9-1	General purpose enclosure only

^{* 4, 5, 6} and 8 inch flange size only.

File Number LR 61707—Heater Assemblies-Miscellaneous-For Hazardous Locations

Heater Type	Code Number Designations	Electrical Enclosure Options
Screw Plug	All catalog "B" models Series 1-xx to 9-xx	Class I, Groups B, C and D
Flange	All catalog models FM , FN , FO , FP , FR , FS , FT , FW Series 1-xx to 9-xx	Class I, Groups B, C and D, and Enclosure 4 with or without thermostat
Circulation	All catalog models CFM, CFN, CFO, CFP, CFR, CFS, CFT, CFW Series 1-10 to 9-10	Class I, Groups B, C and D, and Enclosure 4 with or without thermostat

Note: UL® and CSA must be requested at the time the order is placed.

① Some sheath materials not available on all diameters. Consult factory.

Elements and Assemblies

WATROD Heating Elements

Single- and Double-Ended Elements

Available in single- or double-ended termination styles, the versatile and economical WATROD tubular heating element lends itself to virtually the entire range of immersion and air heating applications.

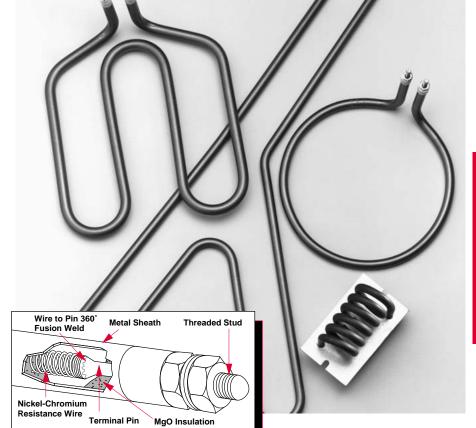
The single-ended WATROD tubular design has both terminals at one end. The opposite end is sealed. Standard 12-inch (305 mm) flexible lead wires are crimp connected to the terminal pin and have silicone-impregnated fiberglass oversleeves.

The double-ended WATROD, with its round cross-sectional geometry, is highly adaptable for bending— especially when bending is performed in the field.

Watlow's new double-sided multicoil tubular elements offer various combinations of resistor coils and thermocouples inside one sheath. They have the ability to sense the heater's internal temperature accurately every time, or offer three-phase capability in one element. Both single- and double-ended WATRODs share many construction.

WATRODs share many construction features that deliver long life—the resistance wire is centered in the heater sheath and electrically insulated with compacted, high-grade magnesium oxide for superior heating performance.

WATROD heating elements have a variety of mounting and termination options that make them highly popular among industrial customers.


Single-Ended WATROD Performance Capabilities

- Watt densities to 45 W/in² (6.9 W/cm²)
- UL® and CSA component recognition to 240V~(ac)
- Incoloy® and stainless steel sheath temperatures to 1200°F (650°C)

Double-Ended WATROD Performance Capabilities

 Watt densities up to 120 W/in² (18.6 W/cm²)

UL® is a registered trademark of Underwriter's Laboratories, Inc.

- UL® and CSA component recognition to 480 and 600V~(ac) respectively
- Inconel® sheath temperatures to 1800°F (982°C)
- Incoloy® sheath temperatures to 1600°F (870°C)
- Stainless steel sheath temperatures to 1200°F (650°C)
- Steel sheath temperatures to 750°F (400°C)
- Copper sheath temperatures to 350°F (175°C)
- Inconel® 600 sheath temperatures to 1800°F (982°C)

Features and Benefits

- Precision wound nickel-chromium resistance wire distributes heat evenly to the sheath for optimum heater performance.
- Silicone resin seals protect against moisture contamination and are rated to 390°F (200°C).

- MgO insulation filled sheath maximizes dielectric strength, heat transfer and life.
- Standard sheath materials include: copper, steel, 316 stainless steel and Incoloy®. Optional materials, available on made-to-order, include 304 stainless steel, Inconel® Monel® and titanium.
- 36 standard bend formations allow forming the heating element to the application. Spirals, compound bends and multi-axis and multi-plane configurations.
- Resistance wire fusion welded to the terminal pin for a stronger, positive electrical connection.
- Stainless steel studs are fusion welded to terminal pins for mechanical strength with ceramic insulators
- Popular termination, mounting and moisture seal options available.

Incoloy®, Inconel® and Monel® are registered trademarks of Special Metals Corporation.

WATROD Heating Elements

High Temperature Tubular Double-Ended Elements

Watlow manufactures high temperature tubular heaters to bridge the gap between standard tubular heaters and Watlow multicell heaters. This new tubular is well suited for process air heating applications in excess of 1300°F (704°C), resulting in a maximum sheath temperature of 1800°F (983°C). Controlled lab testing between the new design and

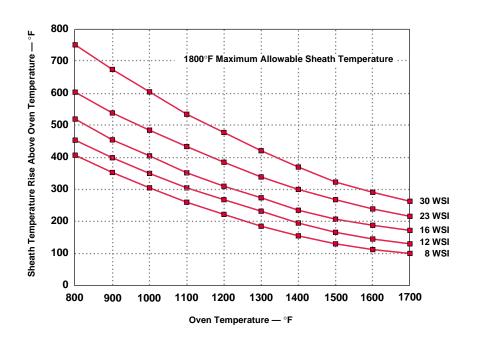
current tubular designs show an increase in life of approximately 50 percent.

The high temperature tubular consists of an engineered tubing with an outer sheath of Inconel® 600 and a special internal construction. The outer sheath offers high temperature capabilities, reduced oxidation, as well as corrosion resistance.

The new tubular offering is available in 0.430 and 0.375 inch diameters that are configurable either as formed tubulars or process heaters. The heaters can also be welded to flanges and plates for mounting purposes. Maximum sheath length available is 275 inches for the 0.430 inch and 0.375 inch diameters. The factory should be contacted for longer sheath lengths.

Features and Benefits

 Inconel® 600 sheath material and a special internal construction assures high temperature performance and corrosion protection in tough applications.

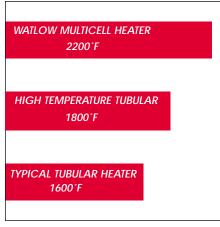

- 0.375 in and 0.430 in diameters allow heater to be configured to existing tubular designs that may be experiencing short life.
- Dual-ended termination can be installed into flanges and screw plugs similarly to standard product configurations.
- Bendable in standard formations makes the heater easy to apply in a wide variety of applications.

Applications

- High temperature ovens and furnaces
- Radiant heating
- Drying
- · Environmental—VOC abatement
- Process air heating: duct heaters, circulation heaters
- Vacuum applications
- Flue gas cleaning (desulphurization)
- · Fluidized beds

Sheath Temperature Versus Oven Temperature at Various Watt Density

This chart is used to verify the correct watt density for an oven application assuming no air flow. To use the chart, first select the oven process temperature on the X axis, using the chosen watt density read the sheath temperature rise above oven temperature from the Y axis. This number should then be added to oven temperature. If this number is greater than 1800°F (982°C), a lower watt density should be chosen.


WATROD Heating Elements

High Temperature Tubular Double-Ended Elements

Continued

Heater Life Estimate Service

High Temperature Heater Comparisons

*Assuming normal design practices.

Watlow now provides an industry first service with the offering of the high temperature tubular. By providing operating parameters Watlow can provide customers with the estimated life of the heater. To get this information the following information should be provided:

- · Heater voltage
- · Heater wattage
- Heater diameter (0.430 in or 0.375 in)
- Heated length
- Bend configuration and dimensions (# of bends and radius)
- Application including process temperature
- Power switching device and cycle time (SCR, etc.)

F.O.B.: Hannibal. Missouri


How to Order

To order please specify:

- Volts
- · Watts
- Heater diameter (0.430 in or 0.375 in)
- Termination type or style (studs, lead wire)
- Heated length
- · Cold end length
- · Overall sheath length
- Formation
- Mounting option (bulkheads, brackets, etc.)

WATROD Heating Elements

Multicoil Single- or Double-Ended Elements

Watlow's new tubular element with multiple coils and/or thermocouples inside one sheath answers the need for a versatile, innovative tubular heater. Our new, patent-pending method of packaging a thermocouple inside of a heater with one or more resistance coils, gives the ability to sense a heaters' internal temperature accurately, every time.

Moreover, this is the first tubular heater in the industry with three-phase capability. The three coil, three-phase heater will offer a lower amperage solution while delivering the full power required in a compact heater package.

Previously three separate heaters would have been required to do the same job; therefore Watlow's new multicoil heater capabilities save money.

Watlow has the capability to put up to two coils in a 0.375 or 0.430 diameter heater and up to three coils in a 0.475 or 0.490 diameter heater. Any one or more of these coils can be a resistance wire or a thermocouple. The bending formations are virtually limitless; while mounting options are similar to other Watlow tubular heaters. The three-phase multicoil heaters can be single ended with three leads for three-phase wye hook up. Watlow recommends using an epoxy moisture seal or silicone-based seal. Watlow's multicoil heaters are

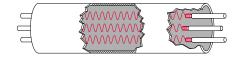
Watlow's multicoil heaters are available in all standard materials such as Incoloy®, 304 and 316 stainless steel, and can be formed into almost any configuration. Our five thermocouple and/or coil options for multicoil tubular configurations will meet most requirements; however, we are always interested in discussing the use of different materials or changing the number of coils and thermocouples.

Features and Benefits

- Three-phase capability results in one element versus three, lower amperage, reduced installation time and lower overall cost.
- Internal thermocouple allows responsive and accurate, internal, high-limit sensing and reduced assembly costs.
- Single ended allows for mounting in a ½ inch NPT or ¾ inch NPT fitting with three-phase capability.
- Multiple coil options reduce inventory by allowing dual voltage capability.
- Versatile forming capabilities can be formed into virtually any configuration.
- Internal construction allows space savings because drilling and tapping of flange is unnecessary; plus, the interior thermocouple eliminates contamination buildup around the external sensing tip, reducing the possibility of false readings.

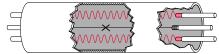
Applications

- Foodservice
- Process
- Medical
- Milled groove
- Plastics
- Plating
- Oven heating
- Semiconductor

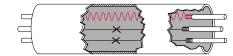

WATROD Heating Elements

Multicoil Single- or Double-Ended Elements

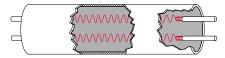
Continued


Options

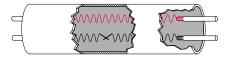
Option A


3-phase tubular, 0.475 and 0.490 inch diameter.

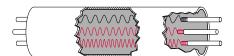
Option B


1-phase tubular with two resistance wires and one thermocouple, 0.475 and 0.490 inch diameter.

Option C


1-phase tubular with one resistance wire and two thermocouples, 0.475 and 0.490 inch diameter.

Option D


1-phase tubular with three different one phase circuits, 0.475 and 0.490 inch diameter.

Option E

1-phase tubular with two resistance coils, 0.375, 0.430, 0.475 and 0.490 inch diameter.

Option F

1-phase tubular with one resistance coil and one thermocouple, 0.375, 0.430, 0.475 and 0.490 inch diameter.

Specifications

Termination style is currently limited to lead wires 392°F (200°C) Sil-A-Blend™ or 482°F (250°C) GGS.

Moisture seals are required, options include:

- Standard epoxy with temperature rating to 266°F (130°C). Typical applications include water/oil immersion.
- Lavacone with temperature rating to 300°F (148.9°C). Typical application includes air heating.
- High-temp ceramic rated to 2800°F (1537.8°C).
- Consult factory for other moisture seal options.
- ULTRAGARD with temperature rating to 700°F (375°C).

Mounting options include:

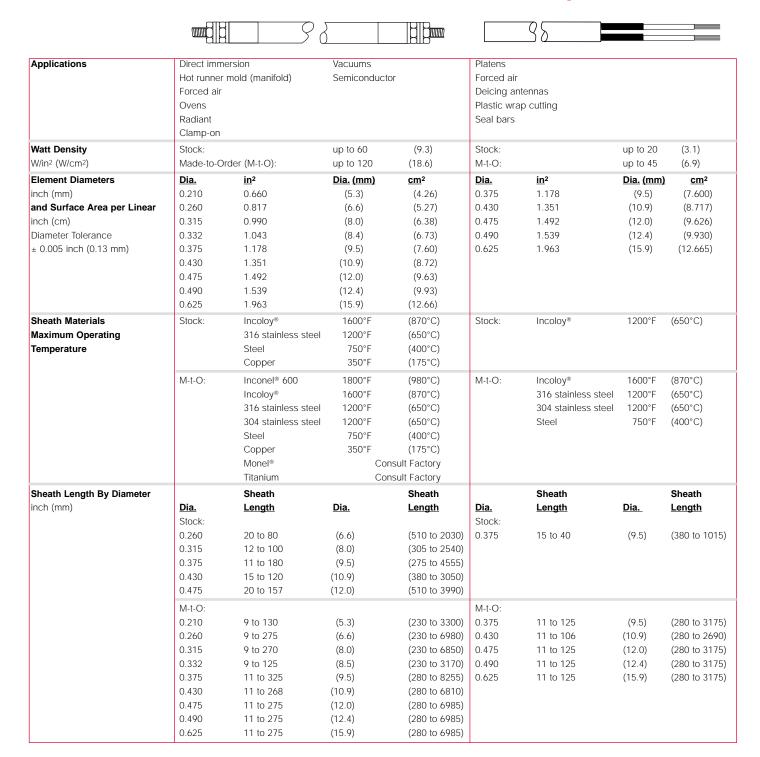
- Mounting brackets
- · Locator washers
- Mounting collars
- · Water-tight bulkheads

Maximum trim length is 237 inches (6020 mm). Heater designs with trim length greater than 120 inches (3048 mm) must be reviewed with factory.

Sheath materials: Incoloy®, 304 and 316 stainless steel, consult factory for other sheath material options.

Internal thermocouple options:

Type K is used, consult factory for Type J thermocouple options.


U.S. Patent Pending

WATROD Heating Elements

Specifications

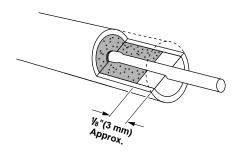
Double-Ended

Single-Ended

WATROD Heating Elements

Specifications

Double-Ended

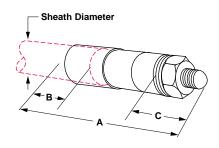

Single-Ended

Minimum No-Heat Length	Sheath	No-Heat	Sheath	No-Heat	Sheath	No-Heat	Sh	eath	No-Heat
inch (mm)	<u>Length</u>	<u>Length</u>	<u>Length</u>	<u>Length</u>	<u>Length</u>	<u>Length</u>	<u>Le</u>	ngth	<u>Length</u>
	11 to 20	1	(280 to 510)	(25)	11 to 20	1½	(280 to	o 5100)	(38)
	21 to 50	11/4	(535 to 1270)	(32)	21 to 50	13/4	(533 to	o 1270)	(44)
	51 to 80	1½	(1295 to 2030)	(38)	51 to 80	21/8	(1295 to	o 2030)	(54)
	81 to 110	1%	(2055 to 2795)	(42)	81 to 110	2¾	(2055 to	o 2795)	(60)
	111 to 140	1¾	(2820 to 3555)	(44)	111 to 125	21/8	(2820 to	o 3175)	(67)
	141 to 170	2	(3580 to 4320)	(51)					
	171 to 200	21/4	(4345 to 5080)	(57)					
	201 & up	21/2	(5105 & up)	(64)	½ inch (13	mm) No-hea	at length or	all blunt	ends
Maximum Voltage/Amperage	Dia.	Volts	Amps		Dia.		Volts		Amps
By Dia.	0.260 (6.6)	250V~(ac)	15			9.5)	480V~(ac)		30
inch (mm)	0.315 (8.0)	480V~(ac)	30		1	0.9)	480V~(ac)		30
	0.332 (8.5)	480V~(ac)	30		`	2.0)	480V~(ac)		30
	0.375 (9.5)	480V~(ac)	30		,	2.4)	480V~(ac)		30
	0.430 (10.9)	600V~(ac)	40		,	5.9)	480V~(ac)		30
	0.430 (10.4)	600V~(ac)	40		0.020 (1	J. 7)	100 v · • (aC)		-
	0.475 (12.0)	600V~(ac)	40						
	0.490 (12.4)	600V~(ac)	40						
Ohms Per Heated Inch	1 1				Dia	Minimum		Maximum	
	<u>Dia.</u> 0.210	Minimum 0.100Ω	<u>Maximum</u> 16Ω		<u>Dia.</u>	Minimum	,	waximum	
By Dia.	0.260		25Ω		0.275	0.2000	_	34Ω	
nch		0.080.0			0.375	0.200Ω			
	0.315	0.050Ω	25Ω		0.430	0.200Ω		34Ω	
	0.332	0.050Ω	23Ω		0.475	0.200Ω		34Ω	
	0.375	0.020Ω	18Ω		0.490	0.200Ω		34Ω	
	0.430	0.025Ω	30Ω		0.625	0.200Ω	3	34Ω	
	0.475	0.030Ω	30Ω						
	0.490	0.030Ω	30Ω						
	0.625	0.030Ω	25Ω						
Terminations	Stock:	Threaded stud			Stock:	Flexible le	ad wires		
	M-t-O:	Threaded stud			M-t-O:	Flexible le	ad wires		
		Screw lug (plate)				Rubber ov	/ermolds		
		Quick connect (sp	oade)						
		Flexible lead wire:	5						
		Rubber overmolds	5						
Seals	Stock:	Silicone resin	390°F	(200°C)	Stock:	Silicone re	esin	390°F	(200°C)
	M-t-O:	Ceramic base	2800°F	(1535°C)	M-t-O:	Silicone ru	ubber (RTV)	500°F	(260°C)
		ULTRAGARD	700°F	(375°C)		ULTRAGA		700°F	(375°C)
		Ceramic-to-metal	500°F	(260°C)		Silicone re	esin	392°F	(200°C)
		Silicone rubber (R		(260°C)		Epoxy res			(130/177°C)
		Silicone resin	392°F	(200°C)		1 3			,
		Epoxy resin	266/350°F	(130/177°C)					
Mounting Options	Threaded bulk		_00,0001	()	Threaded b	ulkhead			
. J - p	Mounting brace				Locator washers				
	Locator washe				Mounting co				
	Mounting colla				.vioariting Ct	Ja. J			
Surface Finish Options			Dright Appac		Polt polichie	na .	г	Priabt Appa	al
Sunace Finish Options	Belt polishing		Bright Anneal		Belt polishir	ig	E	Bright Anne	aı
	Passivation				Passivation				
Agency Recognition	The state of the s	ent to 480V~(ac) (file				nent to 240V			
	CSA Compone	ent to 600V~(ac) (file	e # 31388)		CSA Compo	onent to 240\	/~(ac) (file ₹	# 31388) ①	

WATROD Heating Elements

Options

Moisture Resistant Seals


WATROD's MgO insulating material is hygroscopic. To prevent moisture contamination from entering the heater, an appropriate moisture seal must be used. Choosing the correct seal is important to the life and performance of the heater. Be sure

the maximum continuous use temperature is not exceeded at the seal location. Most end seals are applied with a small cavity in the end of the heater. The seal will also help prevent arcing at the terminal ends.

End Seal Options

End Seal	Code Number	Color	Seal Depth	UL [®] Recognition	Max. Cont. Use Temperature	Typical or General Usage/Application
Standard Epoxy	EC	Cream	³/ ₁₆ "	Yes	266°F (130°C)	General purpose for moisture resistance
Intermediate Epoxy	EB	Blue	³/ ₁₆ "	Yes	350°F (177°C)	Intermediate temp. rating for moisture resistance
High-Temp. Epoxy	HTE	Amber	3/16"	No	450°F (232°C)	Higher temp. rating for moisture resistance
Silicone Resin	SR	Clear	1/16"	Yes	392°F (200°C)	General usage on tubular products
Silicone Fluid	SF	Clear	N/A	No	392°F (200°C)	Moisture resistance of the MgO, or High-Temp.
						ceramic seal (storage only)
Lavacone	LC	Dark Brown	³/ ₁₆ "	Yes	392°F (200°C)	Porous seal for the FIREBAR
Silicone Rubber RTV	RTV	Red-Orange	³/ ₁₆ "	Yes	500°F (260°C)	General usage on FIREBAR applications
ULTRAGARD	UG	Clear	3/16"	Yes	700°F (350°C)	High temp. around seal area and for
						vacuum applications
High-Temp. Ceramic	нтс	White	3/16"	No	2800°F (1538°C)	Very high temperature applications

Ceramic-to-Metal End Seal

	Sheath Diameter		A		В		С	Thread
inch	(mm)	inch	(mm)	inch	(mm)	inch	(mm)	Size
0.260	(6.6)	1 11/16	(40)	1/2	(13)	¹³ / ₃₂	(10)	#8-32
0.315	(8)	1 ⅓	(43)	1½	(13)	¹³ / ₃₂	(10)	#10-32
0.430	(10.9)	21/8	(54)	1/2	(13)	21/32	(10)	#¼-28

To order specify, ceramic-to-metal end seal.

Ceramic-to-metal end seals with threaded stud terminations provide an air-tight seal for continuous terminal temperatures up to 500°F (260°C). Watlow does not recommend this seal if terminations are exposed to temperatures exceeding 500°F (260°C).

External Finishes

Belt Polishing

Belt polishing sands the oxidized sheath to a bright finish. This finish is available only on alloy sheath materials.

To order, specify **belt polishing**.

Bright Annealing

A process that produces a smooth, metallic finish. It is a special annealed finish created in a non-oxidizing atmosphere. This finish is popular in the pharmaceutical and food and beverage markets.

To order, specify bright annealing.

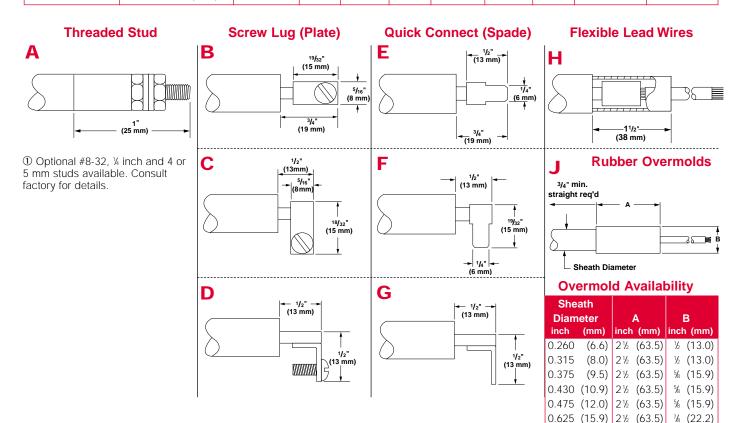
Passivation

During the manufacturing process, particles of iron or tool steel may become embedded in the stainless steel or alloy sheath. If not removed, these particles may corrode, produce rust spots and/or contaminate the process. For critical sheath applications, passivation will remove free iron from the sheath.

To order, specify **passivation**.

WATROD Heating Elements

WATROD Terminations

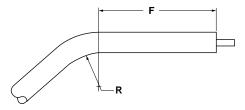

Double-ended WATROD elements are available with a variety of terminations. Single-ended WATROD elements are available with only flexible lead wires.

The following table and illustrations detail the terminations available with double- or single-ended WATRODs—for each available sheath diameter.

Standard flexible lead wires are 12 inches (305 mm), Sil-A-Blend™ 390°F (200°C) unless otherwise specified. Insulation options include TGGT (480°F/250°C) plus other temperature ratings. Consult factory for availability.

Overmolds are available for flexible lead wires only. Available in silicone rubber (390°F/200°C), neoprene (212°F/90°C) and other materials. Consult factory for details.

WATROD	Shea Diam		Threaded Stud ^①	S	crew Lug (Plate)			ck Conne (Spade)	ct	Flexible Lead Wires	Lead Wire Overmolds
Element	inch	(mm)	Α	В	С	D	E	F	G	Н	J
Double-	0.260	(6.6)	#6-32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Ended	0.315	(8.0)	#10-32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	0.335	(8.5)	#10-32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
	0.375	(9.5)	#10-32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
	0.430	(10.9)	#10-32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	0.475	(12.0)	#10-32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	0.490	(12.4)	#10-32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
	0.625	(15.9)	#10-32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Single-	0.375	(9.5)	No	No	No	No	No	No	No	Yes	No
Ended	0.430	(10.9)	No	No	No	No	No	No	No	Yes	Yes
	0.475	(12.0)	No	No	No	No	No	No	No	Yes	Yes
	0.490	(12.4)	No	No	No	No	No	No	No	Yes	No
	0.625	(15.9)	No	No	No	No	No	No	No	Yes	Yes


WATROD Heating Elements

Double-Ended WATROD Bend Formations

Double-ended WATROD heating elements can be formed into spirals, compounds, multi-axis and multi-planes from 36 common bend configurations. Custom bending with tighter tolerances can be made to meet specific application needs.

Formation is limited by the minimum bend radius (R) and the straight length (F) required beyond the bend. In order to locate the end of a heated length within a bend, the radius must be three inches (76 mm) or larger. Additionally, overall length tolerance (T) must be included in one or more of the straight lengths.

Minimum radius for various sheath diameters and lengths are shown in the *Bend Formations* chart below. Illustrated on **pages 282 to 286** are the 36 common bend configurations available on both stock and madeto-order WATROD heating elements.

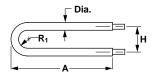
Single-Ended WATROD Bend Formations

Watlow does not recommend field bending single-ended WATROD elements. Formation is limited by the minimum radius of a bend (R) and the straight length (F) beyond the bend. The radius must be three inches (75 mm) or more for the heated length's end to be inside a bend.

Additionally, the overall length tolerance (T) must be provided for in one or more of the specified lengths.

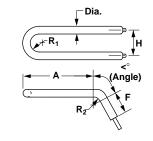
The four common bend configurations available for standard and made-to-order single-ended WATROD elements are Figures 1, 6, 22 and 28.

To order a common bend formation, specify the **bend figure number**, dimensions and critical tolerances.


	WATROD Length Tolerance (T)											
Sheat	h Length	Length Tolerance										
inch	(mm)	inch	(mm)									
11-50	(280-1270)	±1/8	(±3)									
51-110	(1295-2795)	±¾6	(±5)									
111-170	(2820-4320)	± 1/4	(±6)									
171-200	(4345-5080)	± 3/6	(± 10)									
201 & up	(5105 & up)	±1/2	(± 13)									

	WATROD Minimum Radius												
Sheath D	Diameter	Field B	end R①	Facto	ory R①	F2 Dimension							
inch	(mm)	inch	(mm)	inch	(mm)	inch	(mm)						
0.260	(6.6)	3/4	(19)	¾	(10)	1/2	(13)						
0.315	(8.0)	3/4	(19)	1/2	(13)	1/2	(13)						
0.335	(8.5)	1	(25)	1/2	(13)	1	(25)						
0.375	(9.5)	1	(25)	1/2	(13)	1/2	(13)						
0.430	(10.9)	1	(25)	1/2	(13)	3/4	(19)						
0.475	(12.0)	1	(25)	5∕8	(16)	1	(25)						
0.490	(12.5)	1	(25)	5⁄8	(16)	1	(25)						
0.625	(15.9)	1½	(38)	3∕4	(19)	1 ½	(38)						

- ① R is the inside radius of a bend.
- ② F is the distance from the sheath's end to the start of the first bend.


Figure 1

Bend Formations

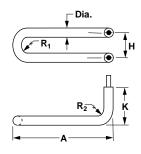
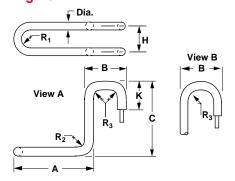

 $SL = 2A + 1.14R_1 - 0.43 Dia.$ (For pricing, use 1 bend)

Figure 2

 $SL = 2A + 2F + 1.14R_1 + 0.0175$ (<°) (2R₂ + Dia.) - 0.43 Dia. (For pricing, use 3 bends)


Figure 3

 $SL = 2K - 0.86R_2 - 2.86 Dia. + 2A + 1.14R_1$ (For pricing, use 3 bends)

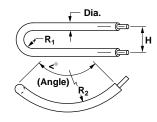

WATROD Heating Elements

Figure 4

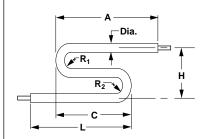

View A: $SL = 2K-1.72R_3 - 7.72$ Dia. + 2C $-0.86R_2 + 2A + 1.14R_1$ View B: $SL = 2K-2.28R_3 - 3.72$ Dia. + 2C $-0.86R_2 + 2A + 1.14R_1$ (For pricing, use 5 bends)

Figure 5

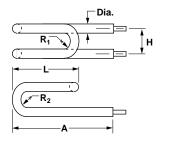

 $SL = 0.0175(<^{\circ}) (2R_2 + Dia.) + 1.14R_1 + 0.43 Dia.$ (For pricing, use 3 bends)

Figure 6

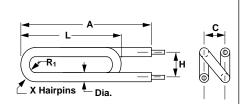

 $SL = L + 1.14R_2 - 0.86 Dia. + C + 1.14R_1 + A$ (For pricing, use 2 bends)

Figure 7

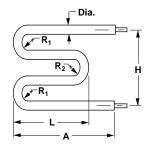

 $SL = 2A + 2.28R_2 - 1.29 Dia. + 2L + 1.14R_1$ (For pricing, use 3 bends)

Figure 8

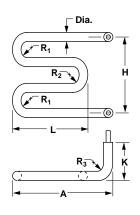

X = number of outside hairpins SL = 2A + 3.42R₁ - 1.29 Dia. + 2L (For pricing, use 5 bends)

Figure 9

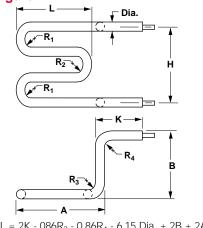

 $SL = 2A + 2.28R_1 - 1.29 Dia. + 2L + 1.14R_2$ (For pricing, use 3 bends)

Figure 10

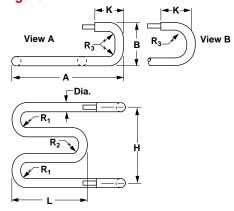
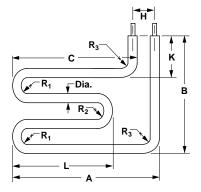

 $SL = 2K - 0.86R_3 - 3.72 Dia. + 2A + 2L + 2.28R_1 + 1.14R_2$ (For pricing, use 5 bends)

Figure 11

 $SL = 2K - 086R_3 - 0.86R_4 - 6.15 Dia. + 2B + 2A + 2L + 2.28R_1 + 1.14R_2$ (For pricing, use 7 bends)


Figure 12

 $\begin{array}{l} \mbox{View A: SL} = 2\mbox{K} + 2\mbox{B} + 2\mbox{A} + 2\mbox{L} + 2.28\mbox{R}_1 \\ + 1.14\mbox{R}_2 - 1.72\mbox{R}_3 - 6.15\mbox{ Dia.} \\ \mbox{View B: SL} = 2\mbox{K} + 2\mbox{A} + 2\mbox{L} + 2.28\mbox{R}_1 + 1.14\mbox{R}_2 \\ - 2.28\mbox{R}_3 - 2.15\mbox{ Dia.} \\ \mbox{(For pricing, use 5 bends)} \end{array}$

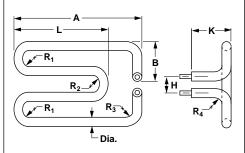

WATROD Heating Elements

Figure 13

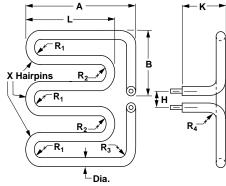

 $SL = 2B + 2A + 2L - 6.717 Dia. - 1.717R_1$ - $H - 0.858R_2 - 0.858R_3$ (For pricing, use 5 bends)

Figure 14

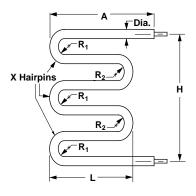

SL+2K+2A+2L+2.28R₁+1.14R₂+2B -6.15 Dia. -0.86R₃+0.86R₄ (For pricing use 7 bends)

Figure 15

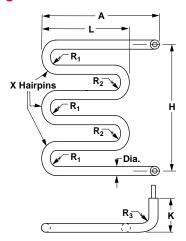

 $\begin{array}{c} X = \text{number of outside hairpins} \\ SL = 2K + 2A + 2K(X - 1) + 2B - 0.86R_3 - 0.86R_4 \\ + 1.14R_1 \ (X) + 1.14R_2 \ (X - 1) - 4.86 \ \text{Dia.} - (2X - 1) \\ 0.43 \ \text{Dia.} \end{array}$ (For pricing, use 9 bends if X = 3 hairpins)

Figure 16

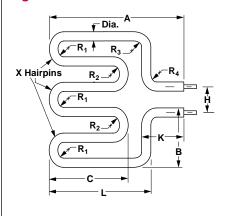

$$\begin{split} X &= \text{number of outside hairpins} \\ SL &= 2A + 0.43 \text{ Dia. } (1 - 2X) + 2L (X - 1) + 1.14R_1 \\ &\quad + 1.14R_2 (X - 1) \\ \text{(For pricing, use 5 bends if X = 3 hairpins)} \end{split}$$

Figure 17

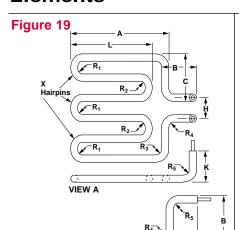
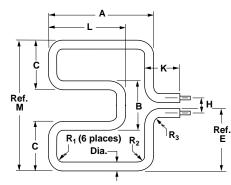

X = number of outside hairpins SL = 1.14R₂ X - 0.88 Dia. X - 1.14R₂ - 2 Dia. + 1.14R₁ X -0.86R₃ + 2L X - 2L + 2A + 2K (For pricing, use 7 bends if X = 3 hairpins)

Figure 18

 $\begin{array}{l} X = \text{number of outside hairpins} \\ \text{SL} = 2\text{L} + 2\text{K} + 2\text{B} + 2\text{C} \left(\text{X} - 1 \right) - 0.86\text{R}_{3} \\ - 0.86\text{R}_{4} - 4.86 \text{ Dia.} + 1.14\text{R}_{1} \left(\text{X} \right) \\ + 1.14\text{R}_{2} \left(\text{X} - 1 \right) - \left(2\text{X} - 1 \right) 0.43 \text{ Dia.} \\ \text{(For pricing, use 9 bends if X} = 3 \text{ hairpins)} \end{array}$


WATROD Heating Elements

 $\begin{array}{l} X = \text{number of outside hairpins} \\ \text{View A and B: SL} = 2\text{K} + 2\text{A} + 2\text{B} + 2\text{C} + 2\text{L} (\text{X} - 1) \\ + 1.14\text{R}_1 (\text{X}) + 1.14\text{R}_2 (\text{X} - 1) - 0.86\text{R}_3 - 0.86\text{R}_4 \\ - 0.86\text{R}_5 - 7.29 \text{ Dia.} - (2\text{X} - 1) 0.43 \text{ Dia.} \\ \text{(For pricing, use 11 bends if X} = 3 \text{ hairpins)} \end{array}$

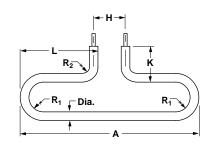

OPTIONAL VIEW B

Figure 20

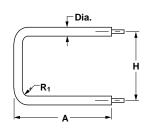

SL = 2K + 2C + B + 2A + 2L - 2.58R₁ - 0.86R₂ - 0.86R₃ - 12.15 Dia. (For pricing, use 10 bends)

Figure 21

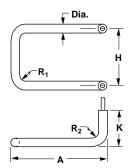

 $SL = 2A + 2K - H - 2.28R_1 - 0.86R_2 \\ - 3.29 \text{ Dia.}$ (For pricing, use 4 bends)

Figure 22

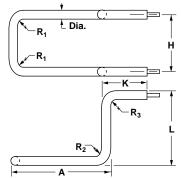

 $SL = 2A - 0.86R_1 - 1.43 Dia. + H$ (For pricing, use 2 bends)

Figure 23

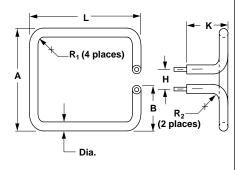

 $SL = 2K - 0.86R_2 - 3.86 Dia. + 2A - 0.86R_1 + H$ (For pricing, use 4 bends)

Figure 24

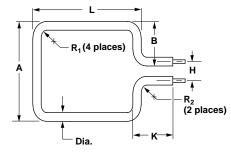

 $SL = 2K + 2L + H - 0.86R_1 - 0.86R_2 - 0.86R_3 \\ - 7.29 \ Dia. \\ \mbox{(For pricing, use 6 bends)}$

Figure 25

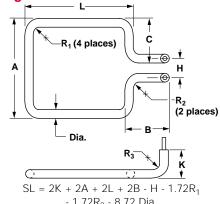
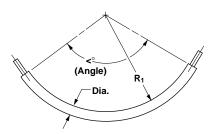

 $SL = 2K + 2A + 2L - H - 1.72R_1 - 0.86R_2$ - 6.92 Dia. (For pricing, use 6 bends)

Figure 26

 $SL = 2K + 2A + 2L - H - 1.72R_1 - 0.86R_2$ - 6.29 Dia. (For pricing, use 6 bends)


Figure 27

- 1.72R₂ - 8.72 Dia. (For pricing, use 8 bends)

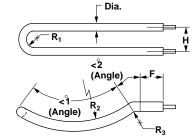

WATROD Heating Elements

Figure 28

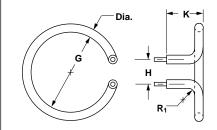

 $SL = 0.0175 < (R_1 + 0.5 Dia.)$ (For pricing, use 1 bend)

Figure 29

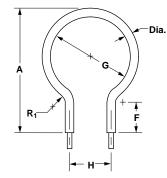

 $SL = 0.0175 < ^{\circ}1 (2R_2 + Dia.) + 2F + 1.14R_1 + 0.0175 < ^{\circ}2 (2R_3 + Dia.) - 0.43 Dia.$ (For pricing, use 5 bends)

Figure 30

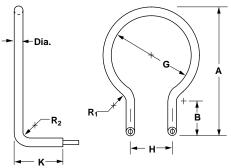

SL = (G + Dia.) 3.14 + 1.14R₁ + 2K + 3.28 Dia. - H (For pricing, use 4 bends)

Figure 31

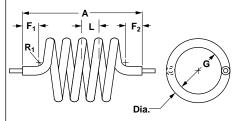

 $SL = (G + Dia.) 3.14 + 1.14R_1 + 2F + 3.71 Dia. - H$ (For pricing, use 4 bends)

Figure 32

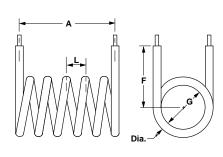

SL = (G + Dia.) $3.14 + 1.14R_1 + 2B + 1.14R_2 + 2K + 3.28$ Dia. - H (For pricing, use 6 bends)

Figure 33

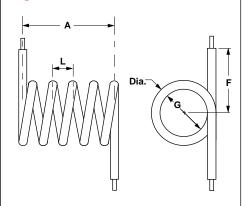

 $SL = [(G + Dia.) (3.14) (Number of 360°'s)] \\ + F1 + F2 \\ (For pricing, consult factory)$

Figure 34

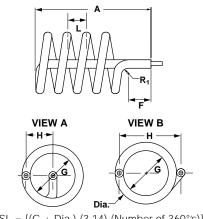
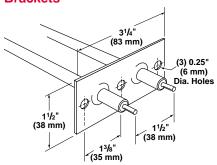

SL = [(G + Dia.) (3.14) (Number of 360°'s)] + 2F(For pricing, consult factory)

Figure 35

SL = [(G + Dia.) (3.14) (Number of 360°'s)] + 2F(For pricing, consult factory)

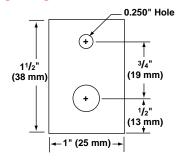
Figure 36



 $SL = [(G + Dia.) (3.14) (Number of 360°'s)] \\ + (G \div 2) + A + F \\ (For pricing, consult factory)$

WATROD Heating Elements

Mounting Methods


Brackets

A 0.065 inch (1.7 mm) thick stainless steel bracket provides element mounting in non-pressurized applications. Attached to the heater sheath, these brackets are not suited for liquid-tight mountings. The bracket is located ½ inch (13 mm) from the sheath's end, unless otherwise specified.

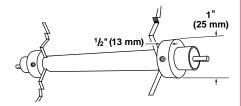
To order, specify mounting bracket.

Single Leg Bracket

A 1 $\frac{1}{2}$ inch (38 mm) x 1 inch (25 mm) wide x 16 gauge stainless steel bracket with one element hole and one mounting hole $\frac{1}{2}$ inch from end.

To order, specify **single leg bracket**.

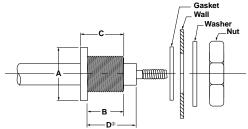
Locator Washers



Stainless steel locator washers retain the heated area of the sheath

in the work zone, while allowing for expansion and contraction during cycling.

To order, specify **locator washer**, along with dimension from the heater's end.


Mounting Collars

Plated steel mounting collars secure the heater sheath with set screws to serve as adjustable stops for through-the-wall mounting. Collars are shipped in bulk.

To order, specify mounting collars.

Threaded Bulkheads

A threaded bushing with flange on the heater sheath provides rigid, leak-proof mounting through the walls of tanks. A gasket, plated steel washer and hex nut are included. The threaded end of the bushing is flush with the sheath's end unless otherwise specified. Threaded bulkheads are available in brass, steel or stainless steel as indicated in the table.

To order, specify **threaded bulkheads** and the specifications from the table.

Threaded Bulkhead Specifications

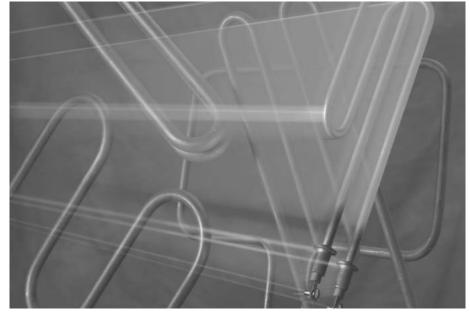
				A ①			В	C	;
Elem	ent			Flanç	ge 💮	Thre	aded	Ove	rall
Diame	eter		Thread	Size/S	tyle	Lei	ngth	Len	gth
inch	(mm)	Material	Size	inch	(mm)	inch	(mm)	inch	(mm)
0.260	(6.6)	Brass	½ - 20 UNF	¾ Round	(19)	%	(15.9)	3/4	(19)
0.260	(6.6)	Steel	½ - 20 UNF	¾ Hex	(19)	5∕8	(15.9)	3/4	(19)
0.260	(6.6)	S. Steel	½ - 20 UNF	¾ Round	(19)	%	(15.9)	3/4	(19)
0.315	(8.0)	Brass	½ - 20 UNF	¾ Round	(19)	%	(15.9)	3/4	(19)
0.315	(8.0)	Steel	½ - 20 UNF	¾ Hex	(19)	3/4	(19.0)	¹⁵ /16	(24)
0.315	(8.0)	S. Steel	½- 20 UNF	¾ Round	(19)	3/4	(19.0)	²⁷ / ₃₂	(21)
0.375	(9.5)	Brass	½ - 20 UNF	¾ Round	(19)	5∕%	(15.9)	3/4	(19)
0.375	(9.5)	Steel	½ - 20 UNF	¾ Hex	(19)	3/4	(19.0)	¹⁵ /16	(24)
0.375	(9.5)	S. Steel	½ - 20 UNF	¾ Round	(19)	3/4	(19.0)	²⁷ / ₃₂	(21)
0.430	(10.9)	Brass	% - 18 UNF	¼ Hex	(22)	3/4	(19.0)	¹⁵ / ₁₆	(24)
0.430	(10.9)	Steel	% - 18 UNF	¼ Round	(22)	3/4	(19.0)	¹⁵ / ₁₆	(24)
0.430	(10.9)	S. Steel	% - 18 UNF	1 Round	(25)	3/4	(19.0)	¹⁵ / ₁₆	(24)
0.475	(12.1)	Brass	% - 18 UNF	% Round	(22)	3/4	(19.0)	¹⁵ /16	(24)
0.475	(12.1)	Steel	% - 18 UNF	1 Round	(25)	1	(25.0)	11/⁄8	(29)
0.475	(12.1)	S. Steel	% - 18 UNF	1 Round	(25)	3/4	(19.0)	¹⁵ /16	(24)
0.490	(12.4)	Brass	¾ - 16 UNF	1 Round	(25)	3/4	(19.0)	1	(25)
0.490	(12.4)	Steel	¾ - 16 UNF	1 Hex	(25)	3/4	(19.0)	1	(25)
0.490	(12.4)	S. Steel	¾ - 16 UNF	1 Round	(25)	3/4	(19.0)	1	(25)
0.625	(15.9)	S. Steel	% - 14 UNF	1 Round	(25)	3/4	(19.0)	1	(25)

- ① Designates the dimension across flats for hex flange style and outside diameter for round flange style.
- 2 Equal to "B" Dimension unless otherwise specified.

WATROD Heating Elements

Tubular PLUS Program

Watlow's Tubular PLUS Program is an innovative stocking program that allows formed tubular heaters to be shipped in three to six days, instead of the four to six weeks it takes most manufacturers.


The Tubular PLUS Program allows customers to order the desired heated length, cold length, diameter, heater wattage, voltage, formation and termination option.

By utilizing stocked 0.315 inch or 0.430 inch diameter Incoloy® elements, an appropriate heater is selected from stock and modified to fit the physical description of the required heater. The heater is annealed to remove moisture and enable bending and then formed to the desired configuration. In most cases the only variation will be a slight difference in the heater wattage.

Because Watlow will now stock additional tubular elements, the Tubular PLUS Program reduces downtime, lowers inventories and increases overall customer value.

Features and Benefits

- Availability of 0.315 inch and 0.430 inch diameters; most commonly requested for formed tubular heaters.
- Cold ends from one inch to 18 inches provide increased capabilities for short and long cold ends.

- Minimum heated lengths to four inches provide shorter heated lengths than currently available using conventional tubulars.
- Incoloy® 800 sheath material provides the highest quality sheath material for immersion and air applications.

PLUS One

 Quick delivery: three to six days vs. four to six weeks results in reduced downtime, lower inventories and increased overall customer value.

PLUS Two

 Precise location of cold ends and heated lengths assists in applying heater and in proper bending, allows uniform heating in platens and puts the heat within the application.

PLUS Three

 Longer element lengths allows use of one element to replace multiple elements and reduces terminations.

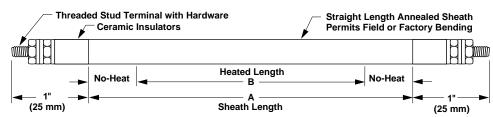
Applications

- Plastics-Hot runner molds
- · Packaging-Seal bars
- · Semiconductor-CVD, PVD
- · Cast-in heater platens

Options

- Maximum heated length: 118 inches, up to 18 inches cold length on each side.
- All standard WATROD options are available.
- Selection of formation numbers 1, 3, 6, 7, 8, 11, 15, 16, 17, 18, 21, 22, 23, 25, 26, 30 and 31 (pages 282-286) offer quick delivery. Special formations will increase delivery times. Please consult factory for details.
- To determine if program is applicable to your needs, please contact your local Watlow sales representative.

W


Tubular PLUS Program Fax Back Order Form Fax to 1-800-697-4329 or outside U.S. 1-573-221-3723

	iside 0.5. 1-5/5-221-3/25					
	Ordered By					
	Order Date					
	Purchase Order #					
	Delivery Date					
	Ship VIA					
	List/Net Price/Unit					
	NSUC					
Heater Des	scription					
	_					
	Product Number					
	Quantity (1-12 pieces)					
	Termination Type: (A, B, C, D, E. F. G)					
	1					
	TGGT - 250°C, Overmold)					
	Leadwire length (Inches in dec.)					
	Bulkhead Type: (Brass, Steel, St. Steel)					
	Mounting: (Brackets, Locator Washers, Mounting Collars)					
	·					
	(From element end, ½" standard)					
7,18,21,22,23,25,26,30,3	31)					
	X Number of outside hairpins					
	R (In 1/8" increments)					
	R1 (In 1/8" increments)					
	R2 (In 1/8" increments)					
	R3 (In 1/6" increments)					
	R4 (In 1/6" increments)					
		Order Date Purchase Order # Delivery Date Ship VIA List/Net Price/Unit NSUC Heater Description Product Number Quantity (1-12 pieces) Termination Type: (A, B, C, D, E, F, G) Leadwire: (Sil-A-Blend™ - 200°C, TGGT - 250°C, Overmold) Leadwire length (Inches in dec.) Bulkhead Type: (Brass, Steel, St. Steel) Mounting: (Brackets, Locator Washers, Mounting Collars) Bracket / washer location: (From element end, ½" standard) X Number of outside hairpins R (In ½" increments) R1 (In ½" increments) R2 (In ½" increments) R3 (In ½" increments)				

K Dimension in inches

WATROD Heating Elements

Double-Ended WATROD

F.O.B.: Hannibal, Missouri

									•	•
WATROD Description		eath nension		ated ension	Watts		Code Number			. Net ight
	inch	(mm)	inch	(mm)		120V∼(ac)	240V~(ac)	480V∼(ac)	lbs	(kg)
Applications	: Medi	um-We	ight, N	on-Circ	ulating O	il, Heat-Transfe	er Oil	'		
15 W/in ²	29%	(759)	22%	(568)	500		RGSS29R10S		1.0	(0.5)
0.475" Dia.	38%	(975)	29%	(759)	667		RGSS38G10S	RGSS38G11S	1.3	(0.6)
Steel	44¾	(1137)	371/4	(946)	833		RGSS44G10S	RGSS44G11S	1.7	(0.8)
(2.3 W/cm ²)	53%	(1356)	44¾	(1137)	1000		RGSS53G10S	RGSS53G11S	1.9	(0.9)
(12 mm)	68¾	(1737)	59%	(1514)	1333		RGSS68G10S	RGSS68G11S	2.1	(1.0)
	83¾	(2118)	74½	(1892)	1667		RGSS83G10S	RGSS83G11S	2.5	(1.1)
	98%	(2499)	89½	(2273)	2000		RGSS98G10S	RGSS98G11S	3.0	(1.4)
	120%	(3057)	111%	(2842)	2500		RGSS120G10S	RGSS120G11S	3.9	(1.8)
	142%	(3629)	1341/4	(3410)	3000		RGSS142R10S	RGSS142R11S	4.1	(1.9)
Application:	Air He	ating	•					•	•	
20 W/in ²	48¾	(1238)	38¾	(984)	1000		RCN48N10S	RCN48N11S	1.0	(0.5)
0.430" Dia.	58¾	(1492)	48¾	(1238)	1250		RCN58N10S	RCN58N11S	1.1	(0.5)
Incoloy®	73¾	(1873)	63¾	(1619)	1667			RCN73N11S	1.4	(0.7)
(3.1 W/cm ²)	91¾	(2330)	81 3/4	(2076)	2083			RCN91N11S	1.7	(0.8)
(10.9 mm)		(/		(/						()
Applications	: Caus	tic Sol	utions,	Air Hea	ating			•	•	
23 W/in ²	29	(737)	22	(559)	500	RBN291S			0.4	(0.2)
Incoloy®	40	(1016)	33	(839)	750	RBN401S			0.5	(0.3)
0.315" Dia.	51	(1296)	44	(1118)	1000	RBN511S			0.7	(0.4)
(3.6 W/cm ²)										
(8 mm)										
23 W/in ²	39	(991)	27	(686)	1000	RGNA391S	RGNA3910S	RGNA3911S	1.2	(0.6)
0.475" Dia.	54	(1372)	42	(1067)	1500		RGNA5410S	RGNA5411S	1.6	(0.8)
Incoloy®	69	(1753)	57	(1448)	2000		RGNA6910S	RGNA6911S	2.1	(1.0)
(3.6 W/cm ²)	84	(2134)	72	(1829)	2500		RGNA8410S	RGNA8411S	2.5	(1.2)
(12 mm)	99	(2515)	87	(2210)	3000		RGNA9910S	RGNA9911S	3.0	(1.4)
	106	(2692)	94	(2388)	2778			RGNA10611S	3.2	(1.5)
	132	(3353)	120	(3048)	4167		RGNA13210S	RGNA13211S	4.0	(1.8)
	157	(3988)	145	(3683)	5000		RGNA15710S	RGNA15711S	4.7	(2.2)
Applications	: Light	Oils, G	rease	s, Heat-	Transfer	Oils				
23 W/in ²	16	(406)	12	(305)	250	RBS161S	RBS1610S		0.2	(0.1)
0.315" Dia.	18	(457)	14	(356)	250	RBS181S			0.3	(0.2)
Steel	21	(533)	17	(432)	350	RBS211S	RBS2110S		0.3	(0.2)
(3.6 W/cm ²)	23%	(594)	19%	(492)	375	RBS23G1S			0.3	(0.2)
(8 mm)	28%	(733)	24%	(632)	500	RBS28R1S			0.4	(0.2)
	29	(737)	24	(610)	500	RBS291S	RBS2910S		0.4	(0.2)
	42	(1067)	37	(940)	750	RBS421S	RBS4210S		0.6	(0.3)
	54	(1372)	49	(1245)	1000	RBS541S	RBS5410S		0.7	(0.4)
	77	(1956)	72	(1829)	1500	RBS771S	RBS7710S		1.0	(0.5)
			`	·		•	•	•	COA	ITINUE

All heating elements are Stock unless otherwise noted.

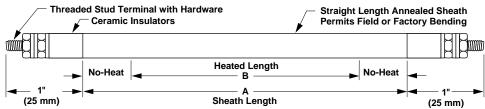
Availability

Stock: Same day shipment Standard: Straight length, three weeks; formed with options, four weeks

WATROD Heating Elements

Double-Ended WATROD

WATROD Description		neath nension		ated ension	Watts		Code Number		Es We	t. Net eight
	inch	(mm)	inch	(mm)		120V∼(ac)	240V~(ac)	480V∼(ac)	lbs	(kg)
Applications	s: Light	Oils, G	rease	s, Heat-	Transfer (Oils	,			
23 W/in ² 0.475" Dia. Steel (3.6 W/cm ²)	23 31 39 45	(584) (787) (991) (1143)	14 22 27 36	(356) (559) (686) (914)	500 750 1000 1250	RGS231S RGS311S RGS391S RGS451S	RGS2310S RGS3110S RGS3910S RGS4510S	RGS3911S	0.7 1.0 1.2 1.4	(0.4) (0.5) (0.6) (0.7)
(12 mm)	54	(1372)	42	(1067)	1500	RGS541S	RGS5410S	RGS5411S	1.6	(0.8)
	69 84 99 106	(1753) (2134) (2515) (2692)	57 72 87 90	(1448) (1829) (2210) (2286)	2000 2500 3000 2778	RGS691S RGS841S	RGS6910S RGS8410S RGS9910S	RGS6911S RGS8411S RGS9911S RGS10611S	2.1 2.5 3.0 3.2	(1.0) (1.2) (1.4) (1.5)
	132 144 157	(3353) (3658) (3988)	120 128 145	(3048) (3251) (3683)	4167 3889 5000		RGS13210S RGS15710S	RGS13211S RGS14411S RGS15711S	4.0 4.3 4.7	(1.8) (2.0) (2.2)
Application:	Air He	ating								
30 W/in² 0.260" Dia. Incoloy® (4.7 W/cm²) (6.6 mm)	20 25 30 35 40	(508) (635) (762) (889) (1016)	15 20 25 30 35	(381) (508) (635) (762) (889)	400 500 600 800 900		RAN2010S RAN2510S RAN3010S RAN3510S RAN4010S		0.2 0.3 0.3 0.4 0.4	(0.1) (0.2) (0.2) (0.2) (0.2)
	45 50 55 60 65	(1143) (1270) (1397) (1524) (1651)	40 45 50 55 60	(1016) (1143) (1270) (1397) (1524)	1000 1200 1200 1400 1600		RAN4510S RAN5010S RAN5510S RAN6010S RAN6510S		0.5 0.5 0.6 0.6 0.7	(0.3) (0.3) (0.3) (0.3) (0.4)
	70 75 80	(1778) (1905) (2032)	65 70 75	(1651) (1778) (1905)	1800 1800 2000		RAN7010S RAN7510S RAN8010S		0.7 0.8 0.8	(0.4) (0.4) (0.4)
30 W/in² 0.315" Dia. Incoloy® (4.7 W/cm²) (8 mm)	15 20 25 30 35	(381) (508) (635) (762) (889)	10 15 20 25 30	(254) (381) (508) (635) (762)	300 400 600 800 900		RBN1510S RBN2010S RBN2510S RBN3010S RBN3510S		0.2 0.3 0.4 0.4 0.5	(0.1) (0.2) (0.2) (0.2) (0.3)
	40 45 50 55 60 65	(1016) (1143) (1270) (1397) (1524) (1651)	35 40 45 50 55 60	(889) (1016) (1143) (1270) (1397) (1524)	1000 1200 1400 1600 1800 1800		RBN4010S RBN4510S RBN5010S RBN5510S RBN6010S RBN6510S		0.5 0.6 0.7 0.7 0.8 0.8	(0.3) (0.3) (0.4) (0.4) (0.4) (0.4)
	70 75 80 90 100	(1778) (1905) (2032) (2286) (2540)	65 70 75 85 95	(1651) (1778) (1905) (2159) (2413)	2000 2200 2400 2600 3000		RBN7010S RBN7510S RBN8010S RBN9010S RBN10010S		0.9 1.0 1.0 1.2 1.3	(0.5) (0.5) (0.5) (0.6) (0.6)


Truck Shipment only

CONTINUED

All heating elements are Stock unless otherwise noted. **Availability Stock**: Same day shipment **Standard**: Straight length, three weeks; formed with options, four weeks

WATROD Heating Elements

Double-Ended WATROD

				(25 r	nm)		Sheath Length		(2	5 mm)
WATROD Description		eath nension	Hea B Dime	ated ension	Watts		Code Number			t. Net eight
	inch	(mm)	inch	(mm)		120V~(ac)	240V~(ac)	480V∼(ac)	lbs	(kg
pplication:	Air He	ating					'	•		
30 W/in ² 0.430" Dia. Incoloy® (4.7 W/cm ²) (10.9 mm)	15 20 25 30 35	(381) (508) (635) (762) (889)	10 15 20 25 30	(254) (381) (508) (635) (762)	400 600 800 1000 1200		RCN1510S RCN2010S RCN2510S RCN3010S RCN3510S		0.3 0.4 0.5 0.6 0.7	(0.2) (0.2) (0.3) (0.3) (0.4)
	40 48 ³ / ₄ 45 50 58 ³ / ₄	(1016) (1238) (1143) (1270) (1492)	35 38¾ 40 45 48¾	(889) (984) (1016) (1143) (1238)	1400 1500 1600 1800 1917		RCN4010S RCNX48N10S RCN4510S RCN5010S RCNX58N10S	RCNX48N11S RCNX58N11S	0.8 1.0 0.9 1.0 1.1	(0.4) (0.5) (0.5) (0.5) (0.5)
	55 60 65 73¾ 70	(1397) (1524) (1651) (1873) (1778)	50 55 60 63¾ 65	(1270) (1397) (1524) (1619) (1651)	2000 2200 2400 2500 2600		RCN5510S RCN6010S RCN6510S RCN7010S	RCNX73N11S	1.0 1.1 1.2 1.4 1.3	(0.5) (0.5) (0.6) (0.7) (0.6)
	75 80 91¾ 90	(1905) (2032) (2330) (2286)	70 75 81¾ 85	(1778) (1905) (2076) (2159)	2800 3000 3167 3500		RCN7510S RCN8010S RCN9010S	RCNX91N11S	1.4 1.5 1.7 1.7	(0.7) (0.7) (0.8) (0.8)
	100 110 120	(2540) (2794) (3048)	95 105 115	(2413) (2667) (2921)	4000 4500 5000		RCN10010S RCN11010S RCN12010S		1.9 2.1 2.3	(0.9) (1.0) (1.1)
pplication:							1	1	1	/- ->
40 W/in ² 0.375" Dia. Incoloy® (6.2 W/cm ²) (9.5 mm)	10¼ 16% 21¼ 27½ 32½	(260) (422) (535) (689) (816)	7 ¼ 13 % 16 ¹³ / ₆ 22 % 27 %	(184) (346) (427) (581) (708)	400 650 800 1100 1300	RDN10E1S RDN16L1S RDN21B1S RDN27C1S	RDN21B10S RDN27C10S RDN32C10S	RDN32C11S	0.2 0.3 0.4 0.5 0.6	(0.1) (0.2) (0.2) (0.3) (0.3)
	42% 57% 69% 81%	(1089) (1461) (1759) (2064)	38% 53% 65 77	(981) (1353) (1651) (1956)	1800 2500 3000 3600		RDN42R10S RDN57J10S RDN69E10S RDN81E10S	RDN42R11S RDN57J11S RDN69E11S RDN81E11S	0.8 1.1 1.3 1.6	(0.4) (0.5) (0.6) (0.8)
	109¼ 134½ 153¾ 179¼	(2775) (3416) (3896) (4553)	105 127¾ 145% 171¼	(2667) (3245) (3705) (4350)	4000 5000 5500 6500		RDN109E10S① RDN134J10S① RDN153R10S① RDN179E10S①		2.1 2.6 2.9 3.4	(1.0) (1.2) (1.4) (1.6)
	1								COI	NTINUE

All heating elements are Stock unless otherwise noted.

Availability

Stock: Same day shipment Standard: Straight length, three weeks; formed with options, four weeks

① Standard

Truck Shipment only

WATROD Heating Elements

Double-Ended WATROD

Special 208V~(ac) and 277V~(ac) Voltages

WATROD Description	Sheath A Dimension		Hea B Dim	ated ension	Watts	Code	Number		st. Net Veight	
	inch	(mm)	inch	(mm)		208V∼(ac)	277V~(ac)	lbs	(kg)	
Application:	Radia	nt Heati	ng							
40 W/in ²	21 1/16	(535)	16 ¹³ // ₆	(427)	800	RDN21B2S①	RDN21B4S①	0.4	(0.2)	
0.375" Dia.	271/8	(689)	221/8	(581)	1100	RDN27C2S①	RDN27C4S①	0.5	(0.3)	
Incoloy®	42 1/8	(1089)	38⅓	(981)	1800	RDN42R2S®	RDN42R4S①	0.8	(0.4)	
(6.2 W/cm ²)	57½	(1461)	531/4	(1353)	2500	RDN57J2S①	RDN57J4S①	1.1	(0.5)	
(9.5 mm)	691/4	(1759)	65	(1651)	3000	RDN69E2S①	RDN69E4S①	1.3	(0.6)	
	81 1/4	(2064)	77	(1956)	3600	RDN81E2S1	RDN81E4S①	1.6	(0.8)	

	nension	ווווע פ	ension	Watts		Code Number		We	eight
inch	(mm)	inch	(mm)		120V~(ac)	240V~(ac)	480V∼(ac)	lbs	(kg)
Proces	ss Wate	r							
23	(584)	14	(356)	1000	RGN231S	RGN2310S	RGN2311S	0.7	(0.4)
30	(762)	21	(533)	1500	RGN301S	RGN3010S	RGN3011S	0.9	(0.5)
39	(991)	27	(686)	2000	RGN391S	RGN3910S	RGN3911S	1.2	(0.6)
44	(1118)	35	(889)	2500	RGN441S	RGN4410S	RGN4411S	1.3	(0.6)
54	(1372)	42	(1067)	3000		RGN5410S	RGN5411S	1.6	(0.8)
69	(1753)	57	(1448)	4000		RGN6910S	RGN6911S	2.1	(1.0)
84	(2134)	72	(1829)	5000		RGN8410S	RGN8411S	2.5	(1.2)
92	(2337)	76	(1930)	5556			RGN9211S	2.8	(1.3)
99	(2515)	87	(2210)	6000		RGN9910S	RGN9911S	3.0	(1.4)
149	(3785)	133	(3378)	9722			RGN14911S	4.5	(2.1)
Hot Ru	ınner M	lolds (Manifol	ds)					
35	(889)	25	(635)	1500		RBR3510S		0.2	(0.1)
44	(1118)	34	(864)	2000		RBR4410S		0.3	(0.2)
52	(1321)	42	(1067)	2500		RBR5210S		0.3	(0.2)
60	(1524)	50	(1270)	3000		RBR6010S		0.4	(0.2)
69	(1753)	59	(1499)	3500		RBR6910S		0.4	(0.2)
77	(1956)	67	(1702)	4000		RBR7710S		0.5	(0.3)
85	(2159)	75	(1905)	4500		RBR8510S		0.6	(0.3)
Deior	nized W	ater, D	eminera	alized Wa	ter				
20	(508)	11	(279)	1000	RGR201S	RGR2010S	RGR2011S	0.6	(0.3)
26	(660)	17	(432)	1500	RGR261S	RGR2610S	RGR2611S	0.8	(0.4)
34	(864)	22	(559)	2000		RGR3410S	RGR3411S	1.0	(0.5)
40	(1016)	28	(711)	2500		RGR4010S	RGR4011S	1.2	(0.6)
47	(1194)	31	(787)	2778			RGR4711S	1.4	(0.7)
46	(1168)	34	(864)	3000		RGR4610S	RGR4611S	1.4	(0.7)
57	(1448)	45	(1143)	4000		RGR5710S	RGR5711S	1.7	(0.8)
68	(1727)	56	(1422)	5000		RGR6810S	RGR6811S	2.1	(1.0)
79	(2007)	67	(1702)	6000		RGR7910S	RGR7911S	2.4	(1.1)
105	(2667)	93	(2362)	8333			RGR10511S	3.2	(1.5)
-	23 30 39 44 54 69 84 92 99 149 Hot Ru 35 44 52 60 69 77 85 Deior 20 26 34 40 47 46 57 68 79	23 (584) 30 (762) 39 (991) 44 (1118) 54 (1372) 69 (1753) 84 (2134) 92 (2337) 99 (2515) 149 (3785) Hot Runner M 35 (889) 44 (1118) 52 (1321) 60 (1524) 69 (1753) 77 (1956) 85 (2159) E Deionized W 20 (508) 26 (660) 34 (864) 40 (1016) 47 (1194) 46 (1168) 57 (1448) 68 (1727) 79 (2007)	23 (584) 14 30 (762) 21 39 (991) 27 44 (1118) 35 54 (1372) 42 69 (1753) 57 84 (2134) 72 92 (2337) 76 99 (2515) 87 149 (3785) 133 Hot Runner Molds (35 (889) 25 44 (1118) 34 52 (1321) 42 60 (1524) 50 69 (1753) 59 77 (1956) 67 85 (2159) 75 E Deionized Water, D 20 (508) 11 26 (660) 17 34 (864) 22 40 (1016) 28 47 (1194) 31 46 (1168) 34 57 (1448) 45 68 (1727) 56 79 (2007) 67	23 (584) 14 (356) 30 (762) 21 (533) 39 (991) 27 (686) 44 (1118) 35 (889) 54 (1372) 42 (1067) 69 (1753) 57 (1448) 84 (2134) 72 (1829) 92 (2337) 76 (1930) 99 (2515) 87 (2210) 149 (3785) 133 (3378) Hot Runner Molds (Manifold (118) 34 (864) 52 (1321) 42 (1067) 60 (1524) 50 (1270) 69 (1753) 59 (1499) 77 (1956) 67 (1702) 85 (2159) 75 (1905) E Deionized Water, Demineration (1279) 26 (660) 17 (432) 34 (864) 22 (559) 40 (1016) 28 (711) 47 (1194) 31 (787) 46 (1168) 34 (864) 57 (1448) 45 (1143) 68 (1727) 56 (1422) 79 (2007) 67 (1702)	23 (584) 14 (356) 1000 30 (762) 21 (533) 1500 39 (991) 27 (686) 2000 44 (1118) 35 (889) 2500 54 (1372) 42 (1067) 3000 69 (1753) 57 (1448) 4000 84 (2134) 72 (1829) 5000 92 (2337) 76 (1930) 5556 99 (2515) 87 (2210) 6000 149 (3785) 133 (3378) 9722 Hot Runner Molds (Manifolds) 35 (889) 25 (635) 1500 44 (1118) 34 (864) 2000 52 (1321) 42 (1067) 2500 60 (1524) 50 (1270) 3000 69 (1753) 59 (1499) 3500 77 (1956) 67 (1702) 4000 85 (2159) 75 (1905) 4500 E Deionized Water, Demineralized Water (1948) 11 (279) 1000 26 (660) 17 (432) 1500 34 (864) 22 (559) 2000 40 (1016) 28 (711) 2500 47 (1194) 31 (787) 2778 46 (1168) 34 (864) 3000 57 (1448) 45 (1143) 4000 68 (1727) 56 (1422) 5000 79 (2007) 67 (1702) 6000	Process Water	Process Water	Process Water	Process Water

All heating elements are Stock unless otherwise noted.

Availability

Stock: Same day shipment


Standard: Straight length, three weeks; formed with options, four weeks

① Standard

Truck Shipment only.

WATROD Heating Elements

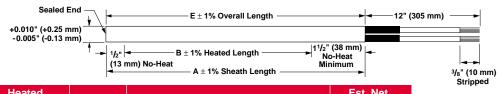
Double-Ended WATROD

WATROD Description		eath nension		ated ension	Watts		Code Number			t. Net eight
	inch	(mm)	inch	(mm)		120V~(ac)	240V~(ac)	480V~(ac)	lbs	(kg)
Application:	Clean	Water								
60 W/in ² 0.315" Dia. Copper (9.3 W/cm ²) (8 mm)	12 16 19% 20 23%	(305) (406) (505) (508) (603)	8 12 12% 16 163	(203) (305) (327) (406) (425)	500 750 750 1000 1000	RBC121S RBC161S RBC19R1S RBC201S RBC23N1S	RBC1210S RBC1610S RBC2010S		0.2 0.2 0.3 0.3 0.3	(0.1) (0.1) (0.2) (0.2) (0.2)
	24 27¾ 33 41 50	(610) (705) (838) (1041) (1270)	20 20¾ 26 34 43	(508) (527) (660) (864) (1092)	1250 1250 1500 2000 2500	RBC241S RBC27N1S RBC331S RBC411S	RBC2410S RBC3310S RBC4110S RBC5010S②		0.3 0.4 0.5 0.6	(0.2) (0.2) (0.3) (0.3) (0.4)
	58 74	(1473) (1880)	51 67	(1295) (1702)	3000 4000	RBC581S2	RBC5810S2 RBC7410S2		0.7 0.8 1.0	(0.4) (0.5)
60 W/in ² 0.475" Dia. Copper (9.3 W/cm ²) (12 mm)	20 26 34 40 46 47	(508) (660) (864) (1016) (1169) (1194)	11 17 22 28 34 31	(279) (432) (559) (711) (864) (787)	1000 1500 2000 2500 3000 2778	RGC201S RGC261S RGC341S RGC401S	RGC2010S RGC2610S RGC3410S RGC4010S RGC4610S②	RGC2611S RGC3411S RGC4011S RGC4611S ² RGC4711S ²	0.6 0.8 1.0 1.2 1.4 1.4	(0.3) (0.4) (0.5) (0.6) (0.7) (0.7)
	57 68 78 79 105	(1448) (1727) (1981) (2007) (2661)	45 56 62 67 93	(1143) (1422) (1575) (1702) (2362)	4000 5000 5556 6000 8333		RGC5710S2 RGC6810S2 RGC7910S2	RGC5711S2 RGC6811S2 RGC7811S2 RGC7911S2 RGC10511S2	1.7 2.1 2.4 2.4 3.2	(0.8) (1.0) (1.1) (1.1) (1.5)

All heating elements are Stock unless otherwise noted. **Availability**

Stock: Same day shipment Standard: Straight length, three weeks; formed with options, four weeks

2 Stocked unannealed. Allow one day for annealing. Specify DO NOT ANNEAL if annealed WATROD not required.


Truck Shipment only

WATROD Heating Elements

Single-Ended WATROD Application Hints

The single-ended WATROD heater's construction limits its usefulness in some applications. The following are some guides to follow when considering a single-ended WATROD.

- When single-ended termination simplifies application wiring.
- Your application requires lower wattage or a smaller package.
- Do not locate the end of the heated length within a bend, unless the radius is three inches (75 mm) or more. Field bending is not recommended.
- Bending is limited to bend Figures 1, 6, 22 and 28 (see pages 282 to 286 for details).
- Ensure termination temperatures do not exceed 390°F (200°C) or the seal's maximum rating.
- Keep terminations clean, dry and tight.

Single-Ended WATROD

WATROD Description		neath mension		ated ension	Watts	Code	Number		Net ight
	inch	(mm)	inch	(mm)		120V∼(ac)	240V~(ac)	lbs	(kg)
Applications	: Plate	n and F	orced	Air Hea	ting, and	Deicing		'	
20 W/in ²	15	(381)	111½	(292)	270	RSN151W	RSN1510W	0.3	(0.2)
0.375" Dia.	20	(508)	16½	(419)	390	RSN201W	RSN2010W	0.4	(0.2)
Incoloy®	25	(635)	21½	(546)	500	RSN251W	RSN2510W	0.5	(0.3)
(3.1 W/cm ²)	30	(762)	26½	(673)	625	RSN301W	RSN3010W	0.6	(0.3)
(9.5 mm)	35	(889)	31½	(800)	750	RSN351W	RSN3510W	0.7	(0.4)
	40	(1016)	36½	(927)	860	RSN401W	RSN4010W	0.8	(0.4)

All heating elements are Standard units.

Availability

Standard: Shipment within six weeks

How to Order

Single or Double-Ended WATROD

To order a stock, standard or assembly stock WATROD element, specify:

- · Watlow code number
- Volts/watts
- · Termination options
- Options
- Quantity

If stock WATROD heaters do not meet your application needs, Watlow can provide a made-toorder unit. Please specify:

- Description of application, including heated material, operating temperature and flow rate, etc.
- Volts/watts
- Sheath material/diameter
- Sheath length

- Single or double-ended
- · Heated length
- · No-heat length at each end
- Terminal pin length or termination options
- Moisture seal type
- Bend configuration, dimensions and critical tolerances (send drawing, if available)
- Options, including external finish and mounting method
- Quantity

Availability

Double-Ended WATROD

Straight Length Element

Stock: Same day shipment **Modified Stock**^①: Three to five working days

Standard: 10 working days **Made-to-Order**: Three weeks

Formed Element

Modified Stock: Five to seven

F.O.B.: Hannibal, Missouri

working days

Standard: Three weeks

Made-to-Order: Four to five weeks

Single-Ended WATROD

Straight Length Element

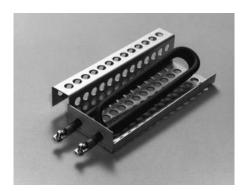
 $\textbf{Modified Stock} \textcircled{\tiny{1}}: Three \ weeks$

Standard: Three weeks **Made-to-Order**: Three weeks

Formed Element

 $\textbf{Modified Stock} @: Three \ weeks$

Standard: Three weeks


Made-to-Order: Four to five weeks

Options, complexity and quantity may affect availability and lead times. Consult factory.

① Stock units with catalog options.

WATROD Heating Elements

Enclosure Heaters

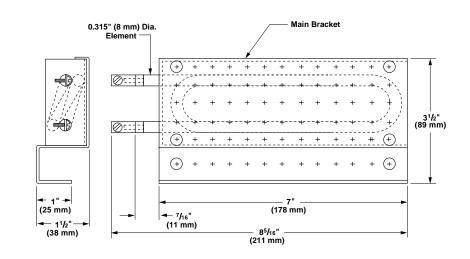
Designed to prevent freezing and condensation in electrical and mechanical housings, the WATROD element is enclosed in a perforated, aluminized-steel bracket.

Performance Capabilities

- Watt densities to 15 W/in² (2.3 W/cm²)
- Wattages to 1000 watts
- UL® and CSA component recognition to 250V~(ac)

Features and Benefits

 Stainless steel sheath wall further resists corrosion and protects the heating coil from exposure.


- Silicone resin seal provides protection against humid storage conditions and is effective to 390°F (200°C).
- Perforated aluminized-steel mounting bracket eases installation and helps prevent direct contact with the heating element.
- Stock straight projection Type B #10-32 screw lug terminals provide easy electrical connection.
- Made-to-Order threaded stud, quick connect and flexible lead wire termination options. See page 281 for details.

Applications

- Control panels
- Traffic signal boxes
- · Automatic teller machines
- · Switch gear
- · Electronic equipment

Application Hints

- Locate heater(s) in the lowest portion of the enclosure to maximize convection heating.
- Place thermostat(s) in the upper half of the enclosure, away from the heater(s).

Watts	Wa Den		Code	No.	Availability		. Net ight	
	W/in²	(W/cm²)	125V∼(ac)	250V~(ac)		lbs	(kg)	
95	4	(0.6)	EN951		Stock	1.5	(0.7)	
100	4	(0.6)		EN10010	Stock	1.5	(0.7)	
250	10	(1.6)	EN2501	EN25010	Stock	1.5	(0.7)	
375	15	(2.3)	EN3751	EN37510	Stock	1.5	(0.7)	

F.O.B.: Hannibal, Missouri

How to Order

To order a stock WATROD enclosure heater, please specify:

- Watlow code number
- Volts/watts
- Termination options
- Options
- Quantity

If our stock units do not meet your application, Watlow can provide 296

made-to-order enclosure heaters. Please specify:

- · Volts/watts
- Sheath diameter/material
- No-heat section
- A, C, H, L and R dimensions per Figure 8 bend formation shown on catalog page 283.
- Termination options
- Options
- Quantity

Availability

Stock: Same day shipment **Modified Stock**①: Three to five

working days

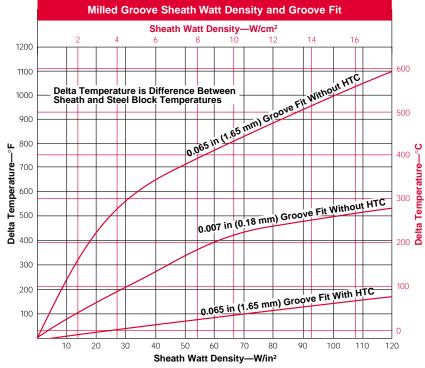
Made-to-Order: Four to five weeks Options, complexity and quantity may affect availability and lead times. Consult factory.

F.O.B.: Hannibal, Missouri

Tubular and Process Assemblies

WATROD Heating Elements

Plastics Application



Hot Runner Mold (Manifold) Features and Benefits

- Precise conformity to customer specifications ensures easy installation—bending tolerances as low as ± 0.002 inch.
- Common element diameters include: 0.260, 0.315, 0.335, 0.375 and 0.430 inch (6.6, 8, 8.5, 9.5 and 10.9 mm).
- Incoloy® sheath material for high temperatures, 304 stainless steel for smaller radius bends.
- Superior resistance coil design produces even heating.
- Threaded stud or leadwire termination as required.

Use the Milled Groove Sheath Watt Density and Groove Fit chart to find the recommended watt density or tightest groove fit. Optimum groove fit, without heat transfer cement, can be determined by plotting the intersect point between the required sheath watt density and the Delta temperature (T). If the Delta T is not known, simply subtract the mold temperature from the maximum 1000°F (540°C) sheath temperature. Any combination of watt density and groove fit which results in a Delta T below the recommended maximum will maximize heater life.

Conversely, if the Delta T is greater, less heater life can be expected.

- Recommended maximum watt density = 40 to 70 W/in² (6.2 to 10.9 W/cm²)
- Recommended groove = 0.065 inch (1.65 mm) larger in diameter than sheath diameter, and use heat transfer cement.
- Recommended heater sheath diameter = 0.315 inch (8 mm)
- Recommended maximum Delta T = 400°F (205°C)
- Maximum sheath temperature = 1000°F (540°C)
- Recommended sheath material = Incoloy®

How to Order

All milled groove heaters are madeto-order. Due to precision forming requirements, please provide a detailed drawing or CAD disk. Consult your Watlow representative for price and shipment details. To help the ordering process, provide the following information:

- Operating temperature
- Volts/watts
- Sheath diameter and material
- · No-heat section
- · Electrical terminations
- Bend configurations and dimensions
- Groove cross section dimensions
- Quantity

Replacement Heaters

To order a replacement for an existing milled groove heater, specify original Watlow code

number, or provide dimensions of the competitive heater, or the groove dimensions from the manifold.

Heat Transfer Cement (HTC)

Heat transfer cement can maximize heater performance and life by increasing thermal conductivity between the sheath and manifold. The maximum exposure temperature is 1250°F (675°C). Available in one quart cans. To order, specify **code number** 148-15-2-1.

Caution

Heat transfer cement conducts electricity. Avoid contact with terminations, wiring and other sources of electric current.

WATROD Heating Elements

Semiconductor Application

Sheath temperatures can vary up to a maximum sheath temperature of 1832°F (1000°C), with maximum watt densities up to 60 W/in². Individual element and assembly speci cations vary depending on the application. Contact factory for E-beam welding, vacuum brazing and special plating.

Features and Benefits

- Operating temperatures to 1832°F (1000°C)
- Electrical isolation to a minimum of 10 teraohms, high isolation resistance heater only
- Vacuum compatibility to 10-9 Torr
- Nitrogen purge vacuum packaging
- Milled groove patterning to 0.25 inch (6.35 mm) radius
- Materials: stainless steel, Incoloy[®], Inconel[®], aluminum, nickel, copper

- Heated part assemblies: hot plates, vacuum ttings, special formed heaters
- Round elements from 0.210 to 0.475 inch (5.3 to 12.1 mm) diameter
- FIREBAR heating elements from 0.625 to 1.00 inch (15.9 to 25.4 mm) wide
- X-Ray capabilities and testing certi cation for ensured reliability.

Applications

- CVD
- PVD
- Etch
- Photolithography
- Annealing
- · Wafer probers
- · Flat panel display

External Finishes

- · Black oxide
- · Bright anneal

- · Glass bead
- Belt polish
- Electropolish

ULTRAGARD Seal

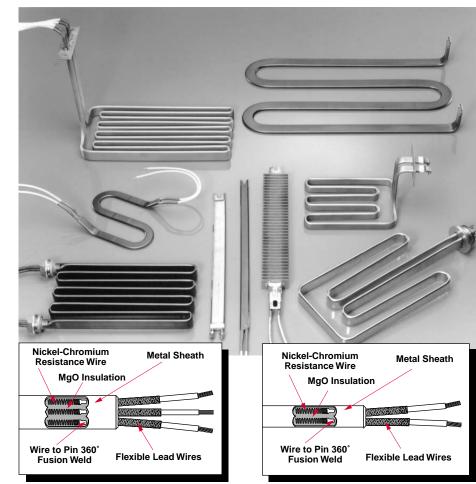
A high temperature hermetic seal to 700° F (350° C).

For special plating, consult the factory.

FIREBAR Heating Elements

FIREBAR® heating elements provide added heating performance over standard round tubular heating elements— especially for immersion applications in petroleum based liquids that require high kilowatts. The FIREBAR's unique flat surface geometry packs more power in shorter elements and assemblies, along with a host of other performance improvements. These include:

- Minimizing coking and fluid degrading
- Enhancing the flow of fluid past the element's surface to carry heat from the sheath
- Improving heat transfer with a significantly larger boundary layer that allows much more liquid to flow up and across the sheath's surface.


FIREBAR elements are available in single- and double-ended constructions with one inch or ⁵₈ inch heights. These two configuration variables make it possible to use FIREBAR elements instead of round tubular elements in virtually all applications.

FINBAR is a special version of the one inch, single-ended FIREBAR. FINBAR is specially modified with fins to further increase surface area for air and gas heating applications. Details are contained in the FINBAR section, starting on **page 318**.

Double-Ended Performance Capabilities

One Inch

- Watt densities to 120 W/in² (18.6 W/cm²)
- Incoloy® sheath temperatures to 1400°F (760°C)
- 304 stainless steel sheath temperatures to 1200°F (650°C)

One Inch Double-Ended FIREBAR Element and Lead Configurations

- Voltages to 480V~(ac)
- Amperages to 48 amps per heater or 16 amps per coil

% Inch

- Watt densities to 90 W/in² (13.9 W/cm²)
- Incoloy® sheath temperatures to 1400°F (760°C)
- Voltages to 480V~(ac)
- Amperages to 32 amps per heater or 16 amps per coil

Single-Ended Performance Capabilities

One Inch

 Watt densities to 60 W/in² (9.3 W/cm²)

% Inch Double-Ended FIREBAR Element and Lead Configurations

- Incoloy® sheath temperatures to 1400°F (760°C)
- 304 stainless steel sheath temperatures to 1200°F (650°C)
- Voltages to 480V~(ac)
- Amperages to 48 amps per heater or 16 amps per coil

% Inch

- Watt densities to 80 W/in² (12.4 W/cm²)
- Incoloy® sheath temperatures to 1400°F (760°C)
- Voltages to 480V~(ac)
- Amperages to 25 amps per heater.

Incoloy® is a registered trademark of Special Metals Corporation.

FIREBAR Heating Elements

One Inch FIREBAR

% Inch FIREBAR

(file # 31388)

Specifications		308
Applications	Direct immersion; water, oils, etc. Clamp-on; hoppers, griddles Forced air heating (Also see FINBAR, page 318) Radiant heating	Direct immersion; water, oils, etc. Clamp-on; hoppers, griddles Forced air heating Radiant heating
Watt Density W/in² (W/cm²)	Stock: up to 90 (13.9) Made-to-Order (M-t-O): up to 120 (18.6)	Stock: up to 90 (13.9) Made-to-Order (M-t-O) up to 90 (13.9)
Surface Area Per Linear Inch (cm)	2.3 in ² (14.8 cm ²)	1.52 in ² (9.80 cm ²)
Cross Section Height ± 0.015/0.010" (0.381/0.254 mm) Thickness ± 0.005/0.001" (0.127/0.025 mm)	1.010 (25.7) 0.235 (5.9)	0.650 (16.5) 0.235 (5.9)
Sheath Material—Maximum Operating Temperature	Stock: Incoloy® 1400°F (760°C) M-t-O: Incoloy® 1400°F (760°C) 304 S. Steel 1200°F (650°C)	Stock: Incoloy® 1400°F (760°C) M-t-O: Incoloy® 1400°F (760°C) 304 S. Steel 1200°F (650°C)
Sheath Length inch (mm)	Stock: 15 to 114 (381 to 2896) M-t-O: 11 to 180 (280 to 4572)	Stock: 15 to 51 (381 to 1295) M-t-O: 11 to 115 (280 to 2920)
Straightness Tolerance Major axis inch/foot (cm/m): Minor axis inch/foot (cm/m):	0.062 (0.52) 0.062 (0.52)	0.062 (0.52) 0.062 (0.52)
No-Heat Length (Refer to page 279)	1" minimum, 12" maximum (25/305 mm)	1" minimum, 12" maximum (25/305 mm)
Maximum Voltage—Amperage Maximum Hipotential Maximum Current Leakage (cold) Maximum Amperage Per Coil Phase(s) Resistance Coils	480V~(ac)- 48 amps 1960V~(ac) 2 milliamps 16 amps 1-phase parallel/series, 3-phase delta/wye 3 or 2	480V~(ac)- 32 amps 1960V~(ac) 2 milliamps 16 amps 1-phase parallel/series 2
Ohms/Inch/Unit① Ohms/Inch/Coil①	0.270 Ω minimum- 2.833 Ω maximum 0.080 Ω minimum- 8.500 Ω maximum per coil	0.040 Ω minimum- 4.250 Ω maximum 0.080 Ω minimum- 8.500 Ω maximum per coil
Terminations	Flexible lead wires Quick connect (spade) Screw lug (plate) Threaded stud	Flexible lead wires Quick connect (spade) Screw lug (plate) Threaded stud
Seals	Stock: Lavacone 390°F (200°C) M-t-O: Ceramic base 2800°F (1535°C) RTV 500°F (260°C) Lavacone 390°F (200°C) Epoxy resin 250°F (120°C)	Stock: Lavacone 390°F (200°C) M-t-O: Ceramic base 2800°F (1535°C) RTV 500°F (260°C) Lavacone 390°F (200°C) Epoxy resin 250°F (120°C)
Minimum Axis Bending Radius inch (mm) (Do Not Field Bend)	Major: 1 (25) Minor: 1 ₂ (13) 90° bend Minor: 5 ₃₂ (4) 180° bend	Major: 3 ₄ (19) Minor: 1 ₂ (13) 90° bend Minor: 5 ₃₂ (4) 180° bend
Mounting Options	Brackets (Type 1, 2 and 3) Threaded bulkhead or fitting	Brackets (Type 1, 2 and 3) Threaded bulkhead or fitting
Surface Finish Options	Bright Anneal, Passivation	Bright Anneal, Passivation
Optional Internal Thermocouple	ASTM Type K	-
Agency Recognition	UL* Component recognition to 480V~(ac) (file # E52951) CSA Component recognition to 480V~(ac)	UL* Component recognition to 480V~(ac) (file # E52951) CSA Component recognition to 480V~(ac)

(file # 31388)

① Resistance values valid for three coil 1 inch FIREBAR only.

FIREBAR Heating One Inch Single-Ended FIREBAR % Inch Single-Ended FIREBAR **Elements Specifications** 3 **Applications** Clamp-on; hoppers, griddles Clamp-on; hoppers, griddles Forced or convection air heating Forced or convection air heating (Also see FINBAR, page 318) **Watt Density** Stock: up to 40 (6.2)Stock: up to 20 (3.1)W/in2 (W/cm2) M-t-O: up to 60 (9.3)M-t-O: up to 60 (12.4)Surface Area Per Linear Inch (cm) 2.3 in² (14.8 cm²) 1.52 in² (9.80 cm²) **Cross Section** Height ± 0.015/0.010" (0.381/0.254 mm) 1.010 (25.7)0.650 (16.5)Thickness ± 0.005/0.001" (0.127/0.025 mm) 0.235 (5.9)0.235 (5.9)Sheath Material-Maximum 304 S. Steel 1200°F Incoloy® 1400°F Stock: (650°C) Stock: (760°C) M-t-O: 1400°F Incoloy® 1400°F Operating Temperature Incoloy® (760°C) M-t-O: (760°C) 304 S. Steel 1200°F 304 S. Steel 1200°F (650°C) (650°C) Sheath Length Stock: 11 to 46 1/4 (280 to 1175) Stock: 11 ½ to 52 (280 to 1321) inch (mm) M-t-O: 11 to 120 (280 to 3048) M-t-O: 11 to 116 (280 to 2946) Straightness Tolerance Major axis inch/foot (cm/m): 0.062 (0.52)0.062 (0.52)Minor axis inch/foot (cm/m): (0.52)0.062 (0.52)0.062 No-Heat Length (Refer to page 279) 1" min., 12" max. (25/305 mm) 1" min., 12" max. (25/305 mm) Top Cold End Bottom (blunt end) Cold End 1 ph- 0.5 min., 2" max. (13/51 mm) Only available at 1.25" 3 ph- 0.75 min., 2" max. (19/51 mm) N/A Maximum Voltage—Amperage 480V~(ac)—48 amps 480V~(ac)-25 amps **Maximum Hipotential** 1960V~(ac) 1960V~(ac) Maximum Current Leakage (cold) 2 milliamps 2 milliamps Maximum Amperage Per Coil 16 amps 16 amps Phase(s) 1-phase, 3-phase wye 1-phase **Resistance Coils** 1 3 or 1 Ohms/Inch/Unit 0.200Ω minimum— 14.00Ω maximum① 0.200Ω minimum— 14.00Ω maximum^① **Terminations** Flexible lead wires Threaded stud Flexible lead wires Quick connect (spade) Quick connect (spade) Screw lug (plate) Screw lug (plate) Seals Stock: Lavacone 392°F (200°C) Stock: Lavacone 392°F (200°C) M-t-O: Ceramic base 2800°F (1535°C) M-t-O: Ceramic base 2800°F (1535°C) RTV 500°F (260°C) RTV 500°F (260°C) Lavacone 390°F (200°C) Lavacone 390°F (200°C) Epoxy resin 266/350°F (130/176°C) Epoxy resin 266/350°F (130/176°C) Minimum Axis Bending Radius Major: (25)Major: (19)1/6 (13)inch (mm) (Do Not Field Bend) Minor: 90° bend Minor: 1/2 (13)90° bend Minor: 5/32 (4) 180° bend Minor: 5/32 180° bend (4) **Mounting Options** Bracket (Type 2) Bracket (Type 2) Threaded bulkhead Threaded bulkhead **Surface Finish Options** Bright Anneal Bright Anneal **Optional Internal Thermocouple** Single-end Configuration Stock: Slotted Stock: Slotted Slotted, sealed or welded Slotted, sealed or welded **Agency Recognition** UL® Component recognition to 480V~(ac) UL® Component recognition to 480V~(ac) (file # E52951) (file # E52951) CSA Component recognition to 480V~(ac) CSA Component recognition to 480V~(ac) (file # 31388) (file # 31388)

FIREBAR Heating Elements

One inch Features and Benefits

Double-Ended

- Streamline, 0.235 X 1.010 inch (5.9 X 25.6 mm) normal to flow dimension reduces drag.
- The 70 percent greater surface area per linear inch, compared to a 0.430 inch (11 mm) diameter round tubular heater, reduces watt density or packs more kilowatts in smaller bundles.
- Compacted MgO insulation maximizes thermal conductivity and dielectric strength.

- Nickel-chromium resistance wires are precision wound.
- The 0.040 inch (1 mm) thick MgO walls more efficiently transfer heat away from the resistance wire to the sheath and media—conducts heat out of the element faster.
- The 360° fusion welded wire-to-pin connection ensures reliable electrical connection.
- Three resistance coil design, configurable to either one- or three-phase power, readily adapts to a variety of electrical sources and wattage outputs.
- Lavacone seals provide protection against humid storage conditions. Moisture retardant to 392°F (200°C).

Single-Ended

- Single-ended termination simplifies wiring and installation.
- Streamline, 0.235 X 1.010 inch (5.9 X 25.6 mm) normal to flow dimension reduces drag.
- The 70 percent greater surface area per linear inch reduces the watt density from that of the 0.430 inch (11 mm) diameter round tubular heater.
- **Slotted end** provides installation ease in clamp-on applications.
- Lavacone seals provide protection against humid storage conditions. Moisture retardant to 392°F (200°C).

% inch Features and Benefits

Double-Ended

- Special sheath dimensions,
 0.235 X 0.650 inch
 (5.9 X 16.5 mm), result in a lower profile heater.
- The 10 percent greater surface area per linear inch reduce the watt density from that of the 0.430 inch (11 mm) diameter round tubular heater.
- The 0.040 inch (1 mm) thick MgO walls efficiently transfer heat away from the resistance wire to the heated media conducts heat out of the element faster.
- Lavacone seals provide protection against humid storage conditions. Moisture retardant to 392°F (200°C).

Single-Ended

- Single-ended termination simplifies wiring and installation.
- Special sheath dimensions, 0.235 X 0.650 inch (5.9 X 16.5 mm), result in a lower profile heater for more wattage in a smaller package.
- Slotted end is supplied for installation ease in clamp-on applications.
- Lavacone seals provide protection against humid storage conditions. Moisture retardant to 392°F (200°C).

FIREBAR Heating Elements

FIREBAR Performance Features

FIREBAR's flat tubular element geometry produces performance features and benefits not possible with traditional round tubular technology. The following describes how and why the FIREBAR is functionally superior for many applications—especially those requiring large wattage with low watt density.

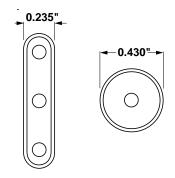
By using the FIREBAR element you can:

- Lower the element's watt density
- Reduce element size and keep the same watt density
- Increase element life by reducing sheath temperature

Flat Shape Produces Lower Sheath Temperature

The FIREBAR element operates at a lower sheath temperature than a round tubular element of equal watt density because of three factors.

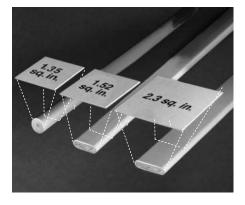
1) Flat Surface Geometry


FIREBAR's flat, vertical geometry is streamline. The liquid's flow past the heating element's surface is not impaired by back eddies inherent in the round tubular shape. The FIREBAR's streamline shape results in fluids flowing more freely with more heat carried away from the sheath.

2) Normal to the Flow

The element's width (thickness) of both one inch and % inch FIREBAR elements is just 0.235 inch (5.9 mm). Compared to a 0.430 inch (11 mm) round tubular element, this relative thinness further reduces drag on liquids or gases flowing past the heater.

Comparative Widths



3) Buoyancy Force

The FIREBAR element's boundary layer, or vertical side, is greater than virtually all round tubular elements. This is 1.010 and 0.650 inches (25.6 and 16.5 mm) for the one inch and % inch FIREBARs respectively, compared to a 0.430 inch (11 mm) diameter on a round tubular element. The FIREBAR element's increased height, relative to flow, increases the buoyancy force in viscous liquids. This buoyancy force can be as much as 10 times greater depending on the FIREBAR element and liquid used.

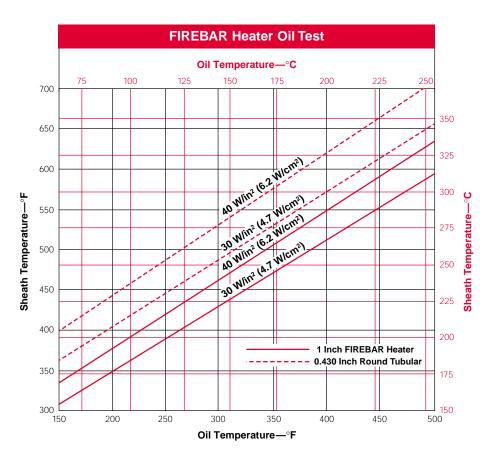
Watt Density and Surface Area Advantages

The surface area per linear inch of a one inch FIREBAR is 70 percent greater than the 0.430 inch (11 mm) diameter round tubular element. And for the % inch FIREBAR it's nearly 10 percent greater.

	Surface Area Per Linear inch (cm)						
Element Type	in ²	(cm²)					
One inch FIREBAR	2.30 in ²	(5.84 cm ²)					
% inch FIREBAR	1.52 in ²	(3.86 cm ²)					
0.430 inch Round	1.35 in ²	(3.43 cm ²)					

Flat vs. Round Geometry Comparisons

The unique flat surface geometry of the FIREBAR element offers more versatility in solving heater problems than the conventional round tubular element. The following comparisons show how the FIREBAR element consistently outperforms round tubular heaters. FIREBAR elements


- Reduce coking and fluid degrading
- Increase heater power within application space parameters
- Provide superior heat transfer in clamp-on applications resulting from greater surface area contact
- Lower watt density

Reducing watt density or sheath temperature extends life. The FIREBAR element allows you to do either, without sacrificing equipment performance ... as is proven by the accompanying Heater Oil Test, Air Flow and Watt Density vs. Sheath Temperature graphs.

FIREBAR Heating Elements

For example, the FIREBAR Heater Oil Test graph compares sheath temperatures of 40 W/in² (6.7 W/cm²) flat and round tubular elements. The FIREBAR element consistently operates at a lower sheath temperature than the round tubular element ... even when light oils are tested at different temperatures. This reduces the chance that coking and fluid degradation will occur.

In fact, the FIREBAR element's sheath temperature at 40 W/in² (6.7 W/cm²) is lower than a 30 W/in² (4.6 W/cm²) round tubular element.

Heater Size and Power

The Heater Size Comparison chart shows, at the same wattage and watt density, the FIREBAR element is 38 percent shorter than a 0.430 inch (11 mm) round tubular element. The FIREBAR element requires less space in application and equipment designs.

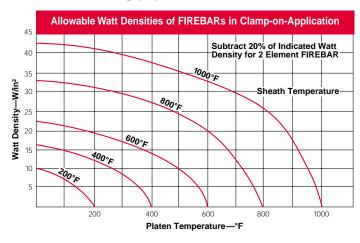
The Heater Power Comparison chart demonstrates equal watt density, element length and increased total wattage for the FIREBAR element. The power in the FIREBAR element is 70 percent greater.

Heater Size Comparison

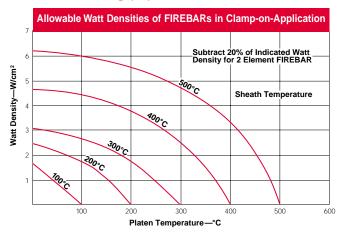
	Heated	Length			
Element	inches	(mm)	Wattage	W/in ²	(W/cm²)
One inch FIREBAR Element	19 %	(505)	1000	23	(3.6)
0.430 inch Round Tubular Element	32¼	(820)	1000	23	(3.6)

Heater Power Comparison

Element	Heated I	Length (mm)	Wattage	W/in²	(W/cm²)
One inch FIREBAR Element	321/4	(820)	1700	23	(3.6)
0.430 inch Round Tubular Element	32¼	(820)	1000	23	(3.6)

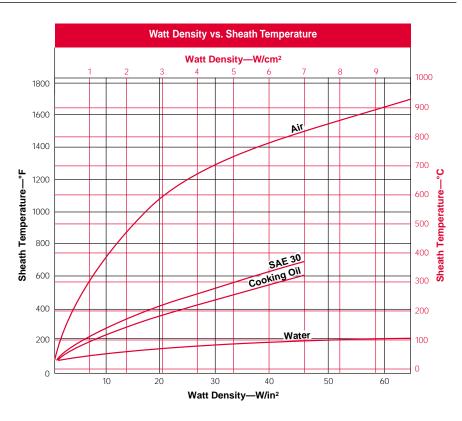

FIREBAR Heating Elements

Clamp-On Applications


Direct immersion in the liquid may not always be practical. In these instances the FIREBAR element can be clamped to a tank wall. Heat from the FIREBAR is conducted to the tank wall and into the media. FIREBAR elements are also economical platen heaters. The *Platen Heating* graph shows FIREBAR's large, flat surface area allows it to operate at twice the watt density of round tubular elements ... without sacrificing heater life.

Clamps should be placed approximately six inches (150 mm) apart and torqued down with 60 in-lbs (6.8 Newton meters).

Platen Heating (°F)



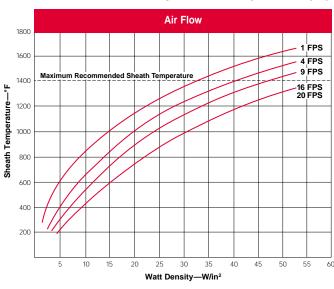
Platen Heating (°C)

Watt Density Vs. Sheath Temperature

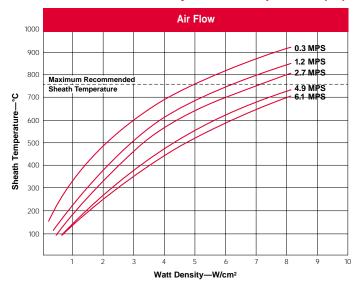
The Watt Density vs. Sheath Temperature graph features sheath temperature curves for commonly heated substances. A FIREBAR element's watt density will result in the sheath temperature shown at the intersecting point of its vertical watt density line and substance curve.

FIREBAR Heating Elements

Air Heating


The Air Flow/Watt Density/Sheath Temperature graph shows the relationship between air flow, watt density and sheath temperature. Keep in mind that lower sheath temperature yields longer heater life.

To use the Air Flow graph, determine the air flow in feet per second (or meters per second). Then follow the curve to find the recommended sheath temperature and watt density.



Air flow normal to sheath geometry

Air Flow/Watt Density/Sheath Temperature (°F)

Air Flow/Watt Density/Sheath Temperature (°C)

Moisture Resistant Seals

A standard lavacone seal is provided to prevent moisture and contaminants from entering the heater. Upon request, optional silicone rubber (RTV) and epoxy resin seals may be ordered.

Silicone Rubber (RTV) Seal

Silicone rubber (RTV) seals are ½ inch (3.2 mm) moisture barriers surrounding the terminal pins at the end of the sheath. Silicone rubber is effective to 500°F (260°C).

Epoxy Resin Seal

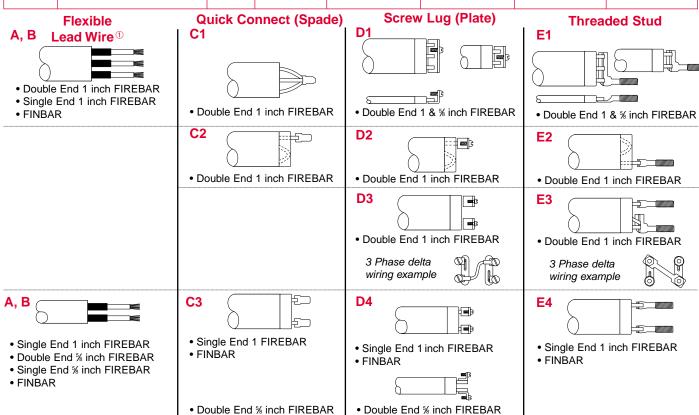
Epoxy resin seals are % inch (3.2 mm) moisture barriers surrounding the terminal pins at the end of the sheath. Epoxy resin is effective to 266°F (130°C) or 350°F (176°C), and recommended for water heating applications.

Application Hints

- Choose a FIREBAR heating element instead of an assembly, when your application requires lower wattages or smaller system packages.
- Keep terminations clean, dry and tight.
- Extend the heated section completely into the media being heated at all times to maximize heat transfer and heater life.
- Do not locate the end of the heated length within a bend, unless the radius is three inches (76 mm) or larger.
- Ensure termination temperatures do not exceed 392°F (200°C) or the maximum temperature rating of the end seal.

FIREBAR Heating Elements

All FIREBAR heaters are available with a variety of termination options. Consult factory for availability.


Termination Code Legend Termination Type

- A = Silicone rubber insulation (Sil-A-Blend™) with fiberglass oversleeves. Rated to 392°F (200°C).
- B = High-temperature TGGT insulation with fiberglass oversleeves. Rated to 480°F (250°C).
- C = Nickel-plated steel quick connect.
- D = Nickel-plated steel screw lug with ceramic insulator and plated steel screw
- E = #10-32 nickel-plated steel threaded stud with plated steel nuts and washers.

Electrical Configuration

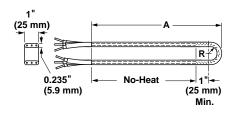
1 = 1-Phase parallel, 2 = 1-Phase series, 3 = 3-Phase delta, 4 = 3-Phase wye

Code				1 Inch F	FIREBAR	5/8 inch l	FIREBAR		
No.	Termination	Phase	Wiring	Dual Ended	S. End/FINBAR	Dual Ended	Single Ended		
Al	Sil-A-Blend™ 200°C Lead wire	1	Parallel	Yes	Yes	Yes	Yes		
A2	Sil-A-Blend™ 200°C Lead wire	1	Series	Yes	No	No	No		
A3	Sil-A-Blend™ 200°C Lead wire	3	Delta	Yes	No	No	No		
A4	Sil-A-Blend™ 200°C Lead wire	3	Wye	No	Yes	No	No		
B1	TGGT 250°C Lead wire	1	Parallel	Yes	Yes	Yes	Yes		
B2	TGGT 250°C Lead wire	1	Series	Yes	No	No	No		
В3	TGGT 250°C Lead wire	3	Delta	Yes	No	No	No		
B4	TGGT 250°C Lead wire	3	Wye	No	Yes	No	No		
C1	1/4" Quick Connect (Spade)	1	Parallel	Yes	Yes	Yes	Yes		
C2	1/4" Quick Connect (Spade)	1	Series	Yes	No	No	No		
D1	Screw Lug (Plate) Terminal	1	Parallel	Yes	Yes	Yes	Yes		
D2	Screw Lug (Plate) Terminal	1	Series	Yes	No	No	No		
D3	Screw Lug (Plate) Terminal	3	Delta	Yes	No	No	No		
E1	#10-32 Stud Terminal	1	Parallel	Yes	Yes	Yes	No		
E2	#10-32 Stud Terminal	1	Series	Yes	No	No	No		
E3	#10-32 Stud Terminal	3	Delta	Yes	No	No	No		

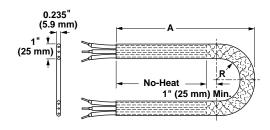
• Single End % inch FIREBAR

• Single End % inch FIREBAR

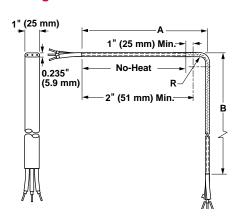
FIREBAR Heating Elements

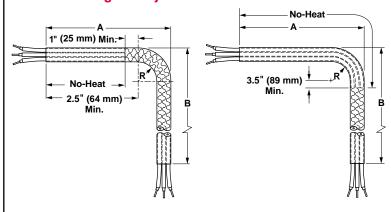

Bending

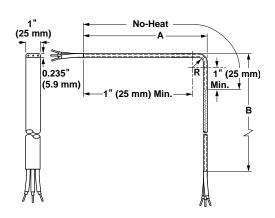
Major and Minor Axis Bending Parameters


The following illustrations detail the recommended major and minor axis bend parameters for FIREBAR elements. These illustrations show

the relationship between the type of bend and the location of heat and no-heat sections. See **pages 309 to 310** for the 15 common bend formations. **Note:** Watlow does not recommend field bending FIREBAR elements. If the element must be bent in the field, please consult your Watlow representative for assistance.


180 degree Minor Axis Heated Bend


180 degree Major Axis Heated Bend


90 degree Minor Axis Heated Bend

90 degree Major Axis Heated Bend

90 degree Minor Axis Un-Heated Bend

180 degree Major Axis Bends

FIREB	AR Size	Ra		
inch	(mm)	inch	(mm)	Arc Length
%"	(16)	3/4"	(19)	3.125
%"	(16)	1"	(25)	3.900
%"	(16)	1 ¼"	(32)	4.620
5∕%"	(16)	1 ½"	(38)	5.600
1"	(25)	1"	(25)	4.335
1"	(25)	1 ¼"	(32)	5.121
1"	(25)	1 ½"	(38)	5.906

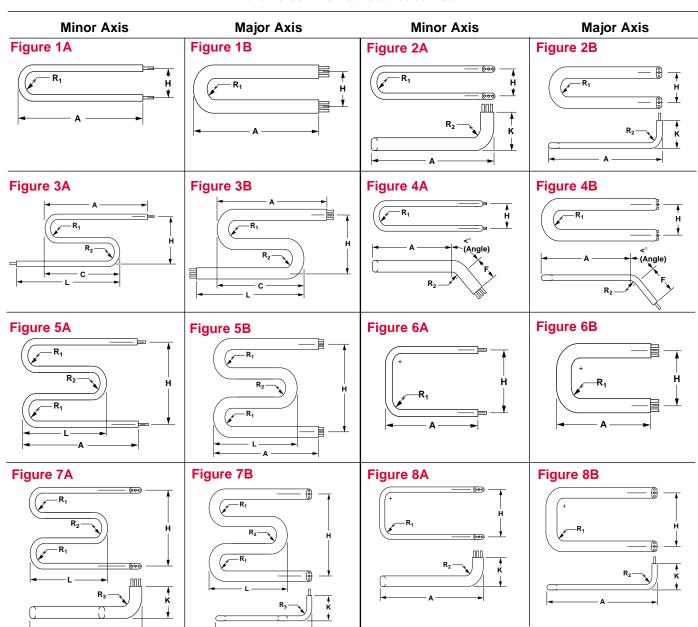
FIREBAR Heating Elements

Bend Formations

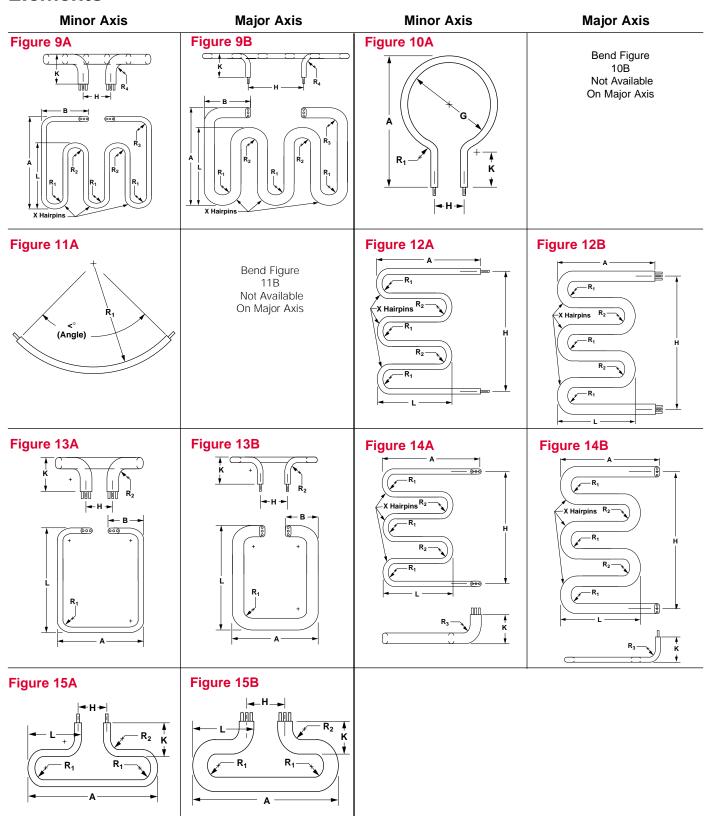
FIREBAR elements can be formed into spirals, compounds, multi-axis and multi-plane configurations from 15 common bends. Custom bending with tighter tolerances can be made to meet specific application needs.

Formation is limited by bending parameters specified in the illustrations of major and minor axis

bends on **page 308**. On these illustrations, please note the no-heat end location.


The no-heat end junction must be located a minimum of one inch (25 mm) from any bend. If these parameters are not followed, the heater may fail prematurely.

Illustrated on **pages 309 to 310** are the 15 common bends that can be

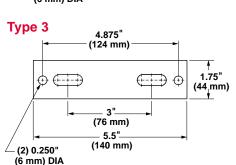

ordered for all in-stock and **made-to-order** FIREBAR heating elements.

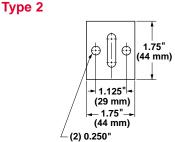
To order a common bend, specify the **figure number** and **critical dimensions**.

Note: The alpha characters and symbols are used to designate specific dimensions within each illustration.

FIREBAR Heating Elements

FIREBAR Heating Elements


Mounting Brackets


Steel brackets provide element mounting in non-pressurized applications. In air heating applications, an 18 gauge aluminized steel bracket is press fitted to the element. A ¼ inch (6 mm) thick steel bracket is brazed or welded liquid-tight to the element for liquid heating. Upon request, stainless steel brackets can be provided. Special sizes also available.

The bracket is located ½ inch (13 mm) from the sheath's end, unless otherwise specified. Available on ½ inch FIREBAR as **made-to-order** only.

To order, specify **mounting bracket** as well as type, location, material and size.

72.625" (67 mm) 1.75" (44 mm) (2) 0.250" (83 mm) (83 mm) (6 mm) DIA

(6 mm) DIA

Threaded Bulkheads

A threaded stainless steel bushing with flange on the heater sheath provides rigid, leak-proof mounting through tank walls. A gasket, plated steel washer and hex nut are included.

To order, specify **threaded bulkheads**.

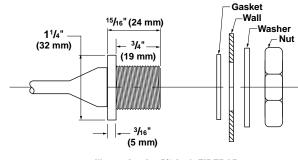
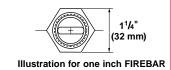
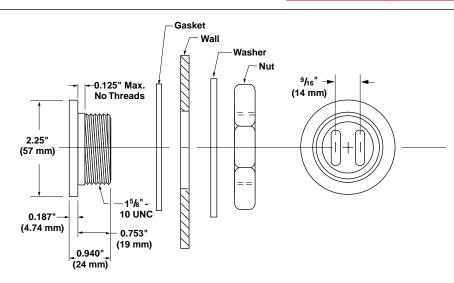



Illustration for 5/8 inch FIREBAR



Heate	er Size	Thread
inch	(mm)	Size
5∕8"	(16)	%-14 UNF-2A
1"	(25)	¾-16 UNF-2A

Water-Tight Double Leg Threaded Fitting

A threaded 1% inch-10 UNC stainless steel fitting with flange on the heater sheath provides rigid, leak-proof mounting through tank walls. This fitting allows both legs of the heater to pass through the same opening. A gasket, plated steel washer and hex nut are included. The threaded end of the bulkhead is mounted flush with the sheath's end, unless otherwise specified. Available on **one inch FIREBAR only**.

To order, specify water-tight double leg threaded fitting.

FIREBAR Heating Elements

Options

Continued

Surface Finish

Bright Annealing

A process that produces a smooth, metallic finish. It is a special annealed finish created in a non-oxidizing atmosphere. This finish is popular in the pharmaceutical and foodservice/beverage markets.

To order, specify **bright annealing**.

Passivation

During manufacturing, particles of iron or tool steel may be embedded in the stainless steel or alloy sheath. If not removed, these particles may corrode and produce rust spots. For critical sheath applications, passivation will remove free iron from the sheath.

To order, specify **passivation**.

Internal Thermocouples

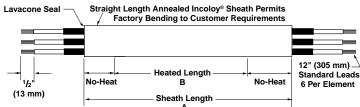
To provide protection against element over-temperature conditions, one inch single- and double-ended FIREBAR elements can be ordered with ASTM **Type K** thermocouples. This is accomplished by eliminating the center resistance coil and embedding the thermocouple

junction inside the sheath. Thus thermocouples are available only on two resistance coil, one inch FIREBAR elements.

To order, specify:

- Type K thermocouple
- Distance the junction is to be located from the element's end
- · Lead length

Thermocouple Types


ASTM Type	Conductor Positive	Characteristics Negative		mended① :ure Range (°C)
К	Chromel® (Non-magnetic)	Alumel® (Magnetic)	0 to 2000	(-20 to 1100)

① **Type K** thermocouples are rated 32 to 2282°F (0 to 1250°C). Watlow does not recommend exceeding the temperature range shown on this chart.

Alumel® and Chromel® are registered trademarks of the Hoskins Manufacturing Company.

FIREBAR Heating Elements

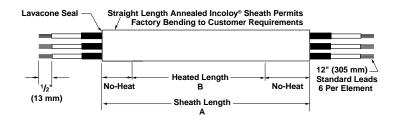
One Inch, Double Ended FIREBAR

F.O.B.: Hannibal, Missouri

FIREBAR			1/2" Heated Length No-Heat B No-Hea						Standard Leads 6 Per Element		
						(13 mm)	Sheath A		-		
FIREBAR		neath		ated	Wester					. Net	
Description	inch	nension (mm)	inch	ension (mm)	Watts	120V~(ac)	Code Number 240V~(ac)	480V~(ac)	Ibs	eight (kg	
Applications		· '		· /	Bunker Oil.	, ,	-101 (40)	1001 (40)		(9	
6 W/in ²	35	(889)	25	(635)	310	FBN351WD			1.3	(0.6)	
Incoloy®	41	(1041)	31	(787)	410	FBN411WD			1.5	(0.0)	
(1 W/cm ²)	51	(1295)	41	(1041)	530	FBN511WD	FBN5110WD		1.9	(0.7)	
(1 W/CIII)	62	(1574)	52	(1320)	650	FBN621WD	FBN6210WD		2.3	(1.1)	
		, ,		` ′					-	. ,	
	72	(1828)	62	(1574)	800	FBN721WD	FBN7210WD		2.6	(1.2)	
	93	(2362)	83	(2108)	1060	FBN931WD	FBN9310WD		3.4	(1.6)	
	114	(2895)	104	(2641)	1350	FBN1141WD	FBN11410WD		4.2	(1.9)	
Applications	s: Grid	dles, Fu	el Oil,	Clamp-	On						
10 W/in ²	25	(635)	22	(558)	500	FBN251WL			0.9	(0.4)	
Incoloy®	35	(889)	32	(812)	750	FBN351WL	FBN3510WL		1.3	(0.6)	
(1.6 W/cm ²)	47	(1193)	43	(1092)	1000	FBN471WL	FBN4710WL		1.7	(0.8)	
	69	(1752)	65	(1651)	1500	FBN691WL	FBN6910WL		2.5	(1.2)	
	90	(2286)	86	(2184)	2000	FBN901WL	FBN9010WL		3.3	(1.5)	
Applications	: Clan	ıp-On, N	/lediur	n Weigh	t Oils, Liqu	uid Paraffin, Lo	w Temperature (Ovens 400°F (205	S°C)		
15 W/in ² ②	29	(736)	19	(482)	670		FBN2910WE		1.1	(0.5)	
Incoloy®	34	(863)	24	(609)	830		FBN3410WE		1.3	(0.6)	
(2.3 W/cm ²)	39	(990)	29	(736)	1000		FBN3910WE		1.4	(0.7)	
	48	(1219)	38	(965)	1330		FBN4810WE	FBN4811WE	1.8	(0.9)	
	58	(1473)	48	(1219)	1670		FBN5810WE	FBN5811WE	2.1	(1.0)	
	68	(1727)	58	(1473)	2000		FBN6810WE	FBN6811WE	2.5	(1.2)	
	87	(2209)	77	(1955)	2670		FBN8710WE	FBN8711WE	3.2	(1.5)	
	106	(2692)	96	(2438)	3330		FBN10610WE	FBN10611WE	3.9	(1.8)	
Applications		, ,		` '		ture Ovens 30		121110011112		()	
20 W/in ²	15	(381)	11	(279)	500	FBN151WM	(100 0)		0.6	(0.3)	
Incoloy®	20	(508)	16	(406)	750	FBN201WM			0.8	(0.4)	
(3.1 W/cm ²)	26	(660)	22	(558)	1000	FBN261WM	FBN2610WM		1.0	(0.5)	
(3.1 W/CITI2)	36	(914)	32	(812)	1500	FBN361WM	FBN3610WM		1.3	(0.6)	
		` ,								` ′	
	48	(1219)	43	(1092)	2000	FBN481WM	FBN4810WM		1.8	(0.9)	
	70	(1778)	65	(1651)	3000		FBN7010WM	FBN7011WM	2.6	(1.2)	
	91	(2311)	85	(2159)	4000		FBN9110WM	FBN9111WM	3.3	(1.5)	
Applications	s: Degr	easing	Soluti	ons, He	at Transfer	Oils					
23 W/in ²	35	(889)	25	(635)	1250	FBN351WT	FBN3510WT		1.3	(0.6)	
Incoloy®	41	(1041)	31	(787)	1625	FBN411WT	FBN4110WT		1.5	(0.7)	
(3.6 W/cm ²)	51	(1295)	41	(1041)	2125	FBN511WT	FBN5110WT	FBN5111WT	1.9	(0.9)	
	62	(1574)	52	(1320)	2625	FBN621WT	FBN6210WT	FBN6211WT	2.3	(1.1)	
	72	(1828)	62	(1574)	3200	FBN721WT	FBN7210WT	FBN7211WT	2.6	(1.2)	
	93	(2362)	83	(2108)	4250	FBN931WT	FBN9310WT	FBN9311WT	3.4	(1.6)	
	114	(2895)	104	(2641)	5400	FBN1141WT	FBN11410WT	FBN11411WT	4.2	(1.9)	

All heating elements are Stock units unless otherwise noted.

Availability


Stock: Same day shipment Standard: 10 working days ② Standard

Truck Shipment only

CONTINUED

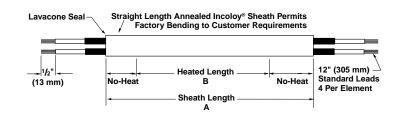
FIREBAR Heating Elements

One Inch, Double Ended FIREBAR

FIREBAR Description		eath nension	Heated B Dimension		Watts	Code Number				. Net eight
	inch	(mm)	inch	(mm)		120V~(ac)	240V~(ac)	480V~(ac)	lbs	(kg
Applications	: Cook	ing Oil	s, Milc	l Causti	c Solution	, Ethylene Glyc	ol (100%)			
30 W/in ²	16	(406)	10	(254)	750	FBN161WH			0.6	(0.3)
Incoloy®	20	(508)	14	(355)	1000	FBN201WH			0.8	(0.4)
(4.7 W/cm ²)	27	(685)	21	(533)	1500	FBN271WH	FBN2710WH		1.0	(0.5)
	34	(863)	28	(711)	2000	FBN341WH	FBN3410WH		1.3	(0.6
	50	(1270)	43	(1092)	3000		FBN5010WH	FBN5011WH	1.8	(0.9)
	64	(1625)	57	(1447)	4000		FBN6410WH	FBN6411WH	2.4	(1.1)
	80	(2032)	72	(1828)	5000		FBN8010WH	FBN8011WH	2.9	(1.4)
Applications	: Proc	ess Wa	ter, Etl	nylene G	Slycol (50%	6)				
40 W/in ²	25	(635)	22	(558)	2000		FBN2510WK		0.9	(0.4)
Incoloy®	35	(889)	32	(812)	3000		FBN3510WK	FBN3511WK	1.3	(0.6)
(6.2 W/cm ²)	47	(1193)	43	(1092)	4000		FBN4710WK	FBN4711WK	1.7	(0.8)
	69	(1752)	65	(1651)	6000		FBN6910WK	FBN6911WK	2.5	(1.2)
	90	(2286)	86	(2184)	8000		FBN9010WK	FBN9011WK	3.3	(1.5)
45 W/in ²	29	(736)	19	(482)	2000		FBN2910WP		1.1	(0.5)
Incoloy®	34	(863)	24	(609)	2500		FBN3410WP		1.3	(0.6)
(7 W/cm ²)	39	(990)	29	(736)	3000		FBN3910WP		1.4	(0.7)
,	48	(1219)	38	(965)	4000		FBN4810WP	FBN4811WP	1.8	(0.9)
	58	(1473)	48	(1219)	5000		FBN5810WP	FBN5811WP	2.1	(1.0)
	68	(1727)	58	(1473)	6000		FBN6810WP	FBN6811WP	2.5	(1.2)
	87	(2209)	77	(1955)	8000		FBN8710WP	FBN8711WP	3.2	(1.5)
	106	(2692)	96	(2438)	10,000		FBN10610WP	FBN10611WP	3.9	(1.8)
Applications	: Clea	n and P	otable	Water	,		•		•	
80 W/in ²	15	(381)	11	(279)	2000		FBN1510WJ		0.6	(0.3)
Incoloy®	20	(508)	16	(406)	3000		FBN2010WJ		0.8	(0.4)
(12.4 W/cm ²)	26	(660)	22	(558)	4000		FBN2610WJ	FBN2611WJ	1.0	(0.5)
	36	(914)	32	(812)	6000		FBN3610WJ	FBN3611WJ	1.3	(0.6)
	48	(1219)	43	(1092)	8000		FBN4810WJ	FBN4811WJ	1.8	(0.9)
	70	(1778)	65	(1651)	12,000			FBN7011WJ	2.6	(1.2)
	91	(2311)	85	(2159)	16,000			FBN9111WJ	3.3	(1.5)
90 W/in ²	35	(889)	25	(635)	5000	FBN351WG	FBN3510WG	FBN3511WG	1.3	(0.6
Incoloy®	41	(1041)	31	(787)	6500	FBN411WG ^①	FBN4110WG	FBN4111WG	1.5	(0.7)
(14 W/cm ²)	51	(1295)	41	(1041)	8500		FBN5110WG	FBN5111WG	1.9	(0.9)
•	62	(1574)	52	(1320)	10,500		FBN6210WG	FBN6211WG	2.3	(1.1)
	72	(1828)	62	(1574)	12,750		FBN7210WG	FBN7211WG	2.6	(1.2
	93	(2362)	83	(2108)	17,000			FBN931WG	3.4	(1.6)
	114	(2895)	104	(2641)	21,5000			FBN11411WG	3.4	(1.6)

All heating elements are Stock units unless otherwise noted.

① Standard

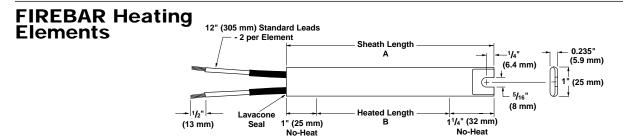

Availability

Stock: Same day shipment **Standard**: 10 working days

Truck Shipment only

FIREBAR Heating Elements

% Inch, Double Ended **FIREBAR**



FIREBAR Description					Watts		Code Number			st. Net eight
	inch	(mm)	inch	(mm)		120V∼(ac)	240V~(ac)	480V∼(ac)	lbs	(kg)
Applications	s: Degr	easing	Fluid	s, Heat T	ransfer O	ils				
23 W/in ² ②	19	(483)	11	(279)	375	FAN191WT			0.5	(0.3)
Incoloy®	22	(559)	14	(356)	500	FAN221WT	FAN2210WT		0.5	(0.3)
(3.6 W/cm ²)	26	(660)	18	(457)	625	FAN261WT	FAN2610WT		0.6	(0.3)
	30	(762)	22	(559)	750	FAN301WT	FAN3010WT		0.7	(0.4)
	37	(940)	29	(737)	1000	FAN371WT	FAN3710WT		0.9	(0.5)
	44	(1118)	36	(914)	1250	FAN441WT	FAN4410WT		1.0	(0.5)
	51	(1295)	43	(1092)	1500	FAN511WT	FAN5110WT		1.2	(0.6)
Applications	s: Clear	n and P	otable	e Water						
90 W/in ²	15	(381)	7	(178)	1000	FAN151WG ^②	FAN1510WG		0.4	(0.2)
Incoloy®	19	(483)	11	(279)	1500	FAN191WG	FAN1910WG ²	FAN1911WG	0.5	(0.3)
(14 W/cm ²)	22	(559)	14	(356)	2000	FAN221WG	FAN2210WG ²	FAN2211WG	0.5	(0.3)
	26	(660)	18	(457)	2500	FAN261WG	FAN2610WG ²	FAN2611WG	0.6	(0.3)
	30	(762)	22	(559)	3000	FAN301WG②	FAN3010WG2	FAN3011WG	0.7	(0.4)
	37	(940)	29	(737)	4000		FAN3710WG ²	FAN3711WG	0.9	(0.5)
	44	(1118)	36	(914)	5000		FAN4410WG②	FAN4411WG	1.0	(0.5)
	51	(1295)	43	(1092)	6000		FAN5110WG ²	FAN5111WG	1.2	(0.6)

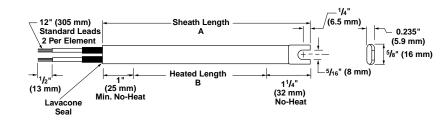
All heating elements are Stock units. **Availability**

Stock: Same day shipment Standard: 10 working days

② Stock

One Inch, Single Ended **FIREBAR**

FIREBAR Description				eated mension	Watts	Code Nu	mber		Net ight
	inch	(mm)	inch	(mm)		120V~(ac)	240V~(ac)	lbs	(kg)
Applications	: Radia	ant, Plat	ens, C	ies, Lov	v Temper	ature Ovens 30	0°F (150°C)		
20 W/in ²	8³ ₄	(222)	6 ¹ 2	(165)	300	FSP91WM		0.4	(0.2)
304 SS	10¹4	(260)	7 ¹ 2	(203)	375	FSP101WM		0.4	(0.2)
(3.1 W/cm ²)	1214	(311)	10	(254)	450	FSP121WM		0.5	(0.3)
	13 ¹ ₂	(342)	111 ₄	(285)	500	FSP141WM		0.5	(0.3)
	16¹8	(408)	13 ⁷ 8	(352)	650	FSP161WM	FSP1610WM	0.6	(0.3)
	17³ ₄	(450)	15 ¹ 2	(393)	725	FSP181WM	FSP1810WM	0.7	(0.4)
	1914	(489)	17	(431)	800	FSP191WM	FSP1910WM	0.7	(0.4)
	22	(558)	19³4	(501)	900	FSP221WM	FSP2210WM	0.8	(0.4)
	2334	(603)	21 ¹ 2	(546)	1000	FSP241WM	FSP2410WM	0.9	(0.4)
	25	(635)	22³4	(577)	1050	FSP251WM	FSP2510WM	0.9	(0.4)
	2858	(727)	26³8	(669)	1250	FSP291WM	FSP2910WM	1.1	(0.5)
	31 ⁵ 8	(803)	29³8	(746)	1350	FSP321WM	FSP3210WM	1.2	(0.6)
	34 ¹ 8	(865)	31 ⁷ 8	(809)	1500		FSP3410WM	1.3	(0.6)
	36 ⁷ 8	(936)	3458	(879)	1600		FSP3710WM	1.4	(0.7)
	40 ⁵ 8	(1031)	38³8	(974)	1800		FSP4110WM	1.5	(0.7)
	46¹4	(1174)	44	(1117)	2000		FSP4610WM	1.7	(8.0)
Applications	: Proce	ess Wat	er, Eth	ylene G	lycol (50°	%)			
40 W/in ²	834	(222)	6 ¹ 2	(165)	600	FSP91WK		0.4	(0.2)
304 SS	10¹4	(260)	71 ₂	(203)	750	FSP101WK		0.4	(0.2)
(6.2 W/cm ²)	12 ¹ 4	(311)	10	(254)	900	FSP121WK	FSP1210WK	0.5	(0.3)
	13 ¹ ₂	(342)	11 ¹ ₄	(285)	1000	FSP131WK	FSP1310WK	0.5	(0.3)
	16¹4	(408)	13 ⁷ 8	(352)	1300	FSP161WK	FSP1610WK	0.6	(0.3)
	17³4	(450)	15 ¹ 2	(393)	1450	FSP181WK	FSP1810WK	0.7	(0.4)
	19¹4	(489)	17	(431)	1600		FSP1910WK	0.7	(0.4)
	22	(558)	19³4	(501)	1800		FSP2210WK	0.8	(0.4)
	2334	(603)	21 ¹ 2	(546)	2000		FSP2410WK	0.9	(0.4)
	25	(635)	22³4	(577)	2100		FSP2510WK	0.9	(0.4)
	28 ⁵ 8	(727)	26³8	(669)	2500		FSP2910WK	1.1	(0.5)
	31 ⁵ 8	(803)	29³8	(746)	2700		FSP3210WK	1.2	(0.6)
	34¹8	(865)	31 ⁷ 8	(809)	3000		FSP3410WK	1.3	(0.6)
	36 ⁷ 8	(936)	34 ⁵ 8	(879)	3200		FSP3710WK	1.4	(0.7)
	40 ⁵ 8	(1031)	38³8	(974)	3600		FSP4110WK	1.5	(0.7)
	46¹4	(1174)	44	(1117)	4000		FSP4610WK	1.7	(8.0)


All heating elements are Stock units.

Availability
Stock: Same day shipment

Sheath

FIREBAR Heating Elements

% Inch, Single Ended FIREBAR

inch (mm) inch (mm) 120V~(ac) 240V~(a	1	(kg)
Applications: Radiant, Platens, Dies, Low Temperature Ovens 300°F (150°C))	
20 W/in² 11 ¹ 2 (292) 8 (203) 250 FSA121WM ①	0.3	(0.2)
Incoloy® 15 ¹ ₂ (394) 12 (304) 375 FSA161WM FSA1610	WM 0.4	(0.2)
(3.1 W/cm ²) 19 ¹ ₂ (495) 16 (406) 500 FSA201WM FSA2010	WM ① 0.5	(0.3)
28 (711) 24 (609) 750 FSA281WM ① FSA2810	WM ① 0.6	(0.3)
36 (914) 32 (812) 1000 FSA361WM FSA3610	WM 0.8	(0.4)
52 (1321) 48 (1219) 1500 FSA521WM FSA5210	WM ① 1.2	(0.6)

Availability

FIREBAR

Stock: Same day shipment **Standard**: 10 working days

① Stock F.O.B.: Hannibal, Missouri

How to Order

To order a stock FIREBAR heating element, specify:

- · Watlow code number
- Size (one or ⁵₈ inch)
- Type (single- or double-ended)
- Volts/watts
- Termination options
- Options
- Quantity

If our stock units do not meet your application needs, Watlow can provide a **made-to-order** unit, please specify:

- Type of application, including heated material, operating temperature, etc.
- Size (one or 58 inch)
- Type (single- or double-ended)
- Volts/watts
- · Sheath length and material
- · Heated length
- · No-heat length

- Terminal pin length or termination options
- Moisture seal
- Bend configuration- including dimensions, critical tolerances, major and minor axis bends (please send drawing, if available)
- Options, including external finish and mounting method
- Quantity

Availability

One and % Inch Double Ended

Straight Length Element
Stock: Same day shipment
Modified Stock®: Three to five

working days

Standard: Three weeks

Made-to-Order: Four to five weeks

Formed Element

Modified Stock: Five to seven

working days

Standard: Three weeks

Est. Net

Made-to-Order: Four to five weeks

One and % Inch Single Ended

Straight Length Element
Stock: Same day shipment
Modified Stock: Three working

days

Made-to-Order: Four to five weeks

Formed Element

Modified Stock: Three working

days

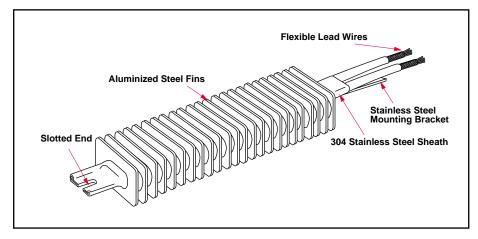
Made-to-Order: Four to five weeks Options, complexity and quantity may affect availability and lead

times. Consult factory.

① Stock units with catalog options.

FIREBAR Heating Elements

FINBAR


Composed of aluminized steel fins press fitted to a one inch single-ended FIREBAR element. The FINBAR is designed to improve heat transfer to the air and permits putting more power in tighter spaces- like forced air ducts, dryers, ovens and load bank resistors.

Heat transfer, lower sheath temperature and element life are all maximized by its finned construction.

Installation is simplified by terminations exiting at one end and mounting accommodations on both ends.

Performance Capabilities

- Watt densities to 50 W/in² (7.7 W/cm²)
- 304 stainless steel sheath temperatures to 1200°F (650°C)
- Voltages to 480V~(ac)
- Amperages to 48 amps per heater or 16 amps per coil

Features and Benefits

- Rugged aluminized steel fins
 effectively increase surface area
 to approximately 16 square
 inches for every linear inch of
 element length. Fins press fitted
 to the heating element improve
 heat transfer to the air.
- Single-ended termination simplifies wiring and installation.
- Stainless steel mounting bracket, welded to the terminal end, is supplied with a slotted end for ease of installation.

 Lavacone seals provide protection against humid storage conditions. Moisture retardant to 392°F (200°C).

Applications

- Forced air heating for dryers, ovens, ducts
- Still air heating for ovens, comfort heating
- Incubators
- Ink drying
- · Load bank resistors

Construction Features

Construction features are detailed for assembly stock products only. Optional materials, sizes, terminations and ratings may be available at additional cost. For availability and ordering information on options, see pages 307 to 312.

Watt Density: Stock; up to 40 W/in² (6.2 W/cm²), made-to-order; up to 50 W/in² (7.7 W/cm²)

Fin Surface Area: 16 in²/linear inch (40.5 cm²/linear cm)

Fin Cross Section: 2 X 1 inch (50 X 25 mm)

Maximum Operating Temperature:

Sheath material: 304 Stainless Steel, 1200°F (650°C), Fin material; Aluminized Steel; 1100°F (600°C)

Heater Length: Stock; 10 to 48 inches (260 to 1210 mm), made-to-order; 6 to 120 inches (150 to 3050 mm)

No-Heat Length: 1 inch minimum, 12 inch maximum (25/305 mm)

Voltages: Up to 480V~(ac)

Phase: Stock; 1-phase parallel made-to-order; 1-phase parallel or

3-phase wye

Resistance Coils: Stock; 1 made-to-order 1 or 3

Terminations: Flexible lead wires, quick connect (spade), screw lug (plate) and threaded stud

Seal Material: Lavacone, rated to 392°F (200°C)

Optional Internal Thermocouple: made-to-order only; ASTM **Type K**

Single-End Configuration: Stock: slotted, made-to-order; slotted, no-slot or sealed

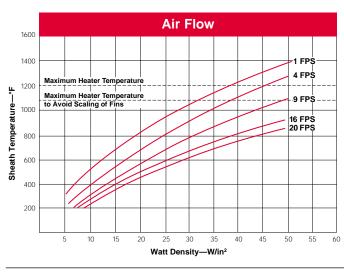
Agency Recognition: refer to FIREBAR UL file # E52951 and CSA file # 31388 under **Agency**

Recognition on pages 268 to 271.

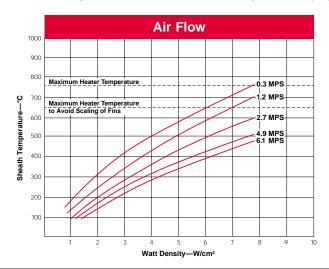
W

FIREBAR Heating Elements

Air Heating


The Watt Density, Air Flow and Sheath Temperature graph shows the relationship between watt density, air flow velocity and sheath temperature, along with a recommended temperature to avoid deteriorating the fins. Be aware that lower sheath temperature yields longer heater life.

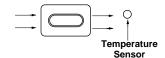
The graphic representation is based on a a single-ended FINBAR, various air velocities (at 68° F/20° C inlet temperature) and different watt densities.


To determine, from the graph, the operating temperature of the FINBAR's sheath, identify the air velocity curve that approximates

your application in feet per second (meters per second). Then look at the vertical line that most closely approximates the FINBAR's watt density. From the intersecting point, read over to the temperature column to determine the sheath's operating temperature.

Watt Density, Air Flow and Sheath Temperature (°F)

Watt Density, Air Flow and Sheath Temperature (°C)



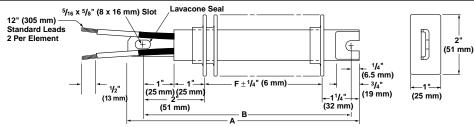
Application Hints

- Avoid deteriorating the fins by not exceeding the recommended maximum fin temperature of 1100°F (600°C).
- Ensure proper air flow to prevent premature heater failure.
- Locate the temperature sensor downstream from heater(s) for process temperature sensing.

The following mounting parameters are recommended:

- Air flow over element must be parallel with the flat side.
- Element center line to element center line spacing must be a minimum of 1¹₂ inches (38 mm).

Proper air flow relative to the heater's sheath is parallel with the longer cross sectional axis.


Dual Ended FINBAR

FINBAR elements are typically terminated at one end. Upon request, however, dual ended

FINBAR heaters can be ordered. To order, specify **dual ended FINBAR** and lead length.

FIREBAR Heating Elements

FINBAR

FINBAR Description		erall nension		verall mension	1	unting nension	Watts	Cod	le Number		t.Net eight
	Inch	(mm)	Inch	(mm)	Inch	(mm)		120V∼(ac)	240V~(ac)	lbs	(kg)
Application:	Force	d Air									
20 W/in ²	101/4	(260)	61/2	(158)	91/2	(241)	300	FSP91WMF		1.4	(0.7)
304 SS	11¾	(298)	8	(203)	11	(279)	375	FSP101WMF		1.4	(0.7)
(3.1 W/cm ²)	13¾	(349)	10	(254)	13	(330)	450	FSP121WMF		1.5	(0.7)
	15	(381)	1111/4	(285)	141/4	(362)	500	FSP141WMF		1.5	(0.7)
	17%	(447)	13%	(352)	16%	(428)	650	FSP161WMF	FSP1610WMF	1.6	(0.8)
	191/4	(489)	151/2	(393)	18½	(469)	725	FSP181WMF	FSP1810WMF	1.7	(0.8)
	20¾	(527)	17	(431)	20	(508)	800	FSP191WMF	FSP1910WMF	1.7	(0.8)
	23½	(597)	19¾	(501)	22¾	(577)	900	FSP221WMF	FSP2210WMF	1.8	(0.9)
	251/4	(641)	21½	(546)	241/2	(622)	1000	FSP241WMF	FSP2410WMF	1.9	(0.9)
	26½	(673)	22¾	(577)	25¾	(654)	1050	FSP251WMF	FSP2510WMF	1.9	(0.9)
	301/8	(765)	26%	(669)	29%	(746)	1250	FSP291WMF	FSP2910WMF	2.1	(1.0)
	331/4	(841)	29%	(746)	32¾	(822)	1350	FSP321WMF	FSP3210WMF	2.2	(1.0)
	35%	(905)	31%	(809)	34%	(885)	1500		FSP3410WMF	2.3	(1.1)
	38¾	(975)	34%	(879)	37%	(955)	1600		FSP3710WMF	2.4	(1.1)
	421/8	(1070)	38 ¾	(974)	41%	(1050)	1800		FSP4110WMF	2.5	(1.2)
	47¾	(1213)	44	(1117)	47	(1193)	2000		FSP4610WMF	2.7	(1.3)
40 W/in ²	101/4	(260)	61/2	(158)	91/2	(241)	600	FSP91WKF		1.4	(0.7)
304 SS	11¾	(298)	8	(203)	11	(279)	750	FSP101WKF		1.4	(0.7)
(6.2 W/cm ²)	13¾	(349)	10	(254)	13	(330)	900	FSP121WKF	FSP1210WKF	1.5	(0.7)
	15	(381)	1111/4	(285)	141/4	(362)	1000	FSP131WKF	FSP1310WKF	1.5	(0.7)
	17%	(447)	13%	(352)	16%	(428)	1300	FSP161WKF	FSP1610WKF	1.6	(0.8)
	191/4	(489)	15½	(393)	18½	(469)	1450	FSP181WKF	FSP1810WKF	1.7	(0.8)
	20¾	(527)	17	(431)	20	(508)	1600		FSP1910WKF	1.7	(0.8)
	231/2	(597)	19¾	(501)	22¾	(577)	1800		FSP2210WKF	1.8	(0.9)
	251/4	(641)	21½	(546)	24½	(622)	2000		FSP2410WKF	1.9	(0.9)
	261/2	(673)	223/4	(577)	25¾	(654)	2100		FSP2510WKF	1.9	(0.9)
	301/8	(765)	26%	(669)	29%	(746)	2500		FSP2910WKF	2.1	(1.0)
	331/4	(841)	29%	(746)	32¾	(822)	2700		FSP3210WKF	2.2	(1.0)
	35%	(905)	31%	(809)	34%	(885)	3000		FSP3410WKF	2.3	(1.1)
	38¾	(975)	34%	(879)	37%	(955)	3200		FSP3710WKF	2.4	(1.1)
	421/8	(1070)	38%	(974)	41%	(1050)	3600		FSP4110WKF	2.5	(1.2)
	47¾	(1213)	44	(1117)	47	(1193)	4000		FSP4610WKF	2.7	(1.3)

All stock units are Assembly stock.

Availability

Assembly Stock: Three working days

How to Order

To order a stock FINBAR heating element, specify:

- · Watlow Code number
- · Volts/watts
- Termination options
- · Options
- Quantity

For **made-to-order** FINBAR heating elements, specify:

- Type of application, including air flow velocity, volume, etc.
- · Single- or double-ended element
- Volts/watts
- Heated length
- No-heat length
- Terminal pin length or termination options, including moisture seal type
- · Quantity

F.O.B.: Hannibal, Missouri

Options, including thermocouple, sealed end, no mounting bracket, etc.

Availability

Assembly Stock: Three working days **Modified Stock**①: Five to seven working days

Made-to-Order: Four to five weeks

Options, complexity and quantity may affect availability and lead times. Consult factory.

① Assembly Stock units with catalog options.

Screw Plug

Tubular and Process Assemblies

Quick Ship

- On stock chart units:
- Same day on most heaters
- 10 working days on special voltages and/or wattages
- · 15 working days on special element lengths

Screw Plug Immersion Heaters

Screw plug immersion heaters are ideal for direct immersion heating of liquids, including all types of oils and heat transfer solutions.

Available in a variety of stock and made-to-order sizes, Watlow screw plug immersion heaters feature both WATROD round and FIREBAR® flat tubular elements.

Heating elements are hairpin bent and either welded or brazed into the screw plug—depending on element sheath and plug material compatibility.

General purpose (NEMA 1) terminal enclosures are standard; with optional moisture resistant (NEMA 4), explosion resistant (NEMA 7) and explosion/moisture resistant (NEMA 7/4) enclosures available to meet specific application needs.

Optional thermostats provide convenient process temperature regulation.

Performance Capabilities

- Watt densities to 120 W/in² (18.6 W/cm²)
- · Wattages to 38kW
- UL® and CSA component recognition to 480V~(ac) and 600V~(ac) respectively
- Incoloy® sheath temperatures to 1600°F (870°C)
- Passivated 316 stainless steel sheath temperatures to 1200°F (650°C)
- 304 stainless steel sheath temperatures to 1200°F (650°C)
- Steel sheath temperatures to 750°F (400°C)
- Copper sheath temperatures to 350°F (175°C)

Features and Benefits

· Screw plug and element sizes:

1" NPT	0.315" WATROD
1¼" NPT	0.315" WATROD
	1" FIREBAR
2" NPT	0.475" WATROD
2½" NPT	0.475" WATROD
	1" FIREBAR

- A variety of element sheath and screw plug materials to meet application needs.
- Integral thermowells provide convenient temperature sensor insertion and replacement without draining the fluid being heated.
- Terminal enclosures can be rotated to simplify connection with existing conduits.

- Welding or brazing WATROD and FIREBAR elements to the screw plug provides a pressure tight seal.
- WATROD hairpins are repressed (recompacted) to maintain MgO density, dielectric strength, heat transfer and life.
- 2½" NPT screw plug assemblies feature element support(s) to help ensure proper spacing for maximizing heater performance and life.
- · Phase capability:

1" NPT	1-Phase
1¼", 2", 2½" NPT	1- or 3-Phase

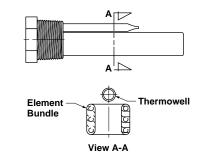
 UL® and CSA component recognition under file numbers E52951 and 31388 respectively. See pages 268-271 for details.

Screw Plug Immersion Heaters

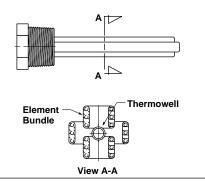
Applications

- · Water:
 - Deionized
 - Demineralized
 - Clean
 - Potable
 - **Process**
- · Industrial water rinse tanks
- · Vapor degreasers

- · Hydraulic oil, crude, asphalt
- Lubricating oils at API specified watt densities
- · Air and gas flow
- · Caustic solutions
- · Chemical baths
- Anti-freeze (glycol) solutions
- Paraffin

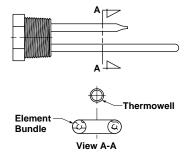

Screw Plug Orientation

Correct element/thermowell orientation assures proper process temperature sensing.

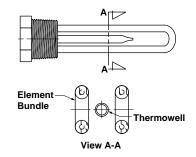

Correct horizontal mounting of WATROD and FIREBAR screw plugs is shown to the right. Correct orientation assures optimum performance and maximum heater life. Additional mounting information is provided in the *Installation and Maintenance Instructions*.

FIREBAR Heating Element

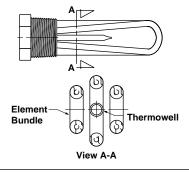
11/4" NPT-One Element



2½" NPT-Three Elements



WATROD Heating Element


1" NPT-One Element

11/4" & 2" NPT-Two Elements

2" & 2½" NPT-Three Elements

Options

Terminal Enclosures

General purpose (NEMA 1) terminal enclosures, without thermostats, are standard on all screw plug immersion heaters. To meet specific application requirements, Watlow offers the following optional terminal enclosures:

 General purpose (NEMA 1) with single or double pole thermostat

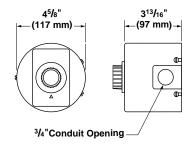
- Moisture resistant (NEMA 4) or corrosion resistant (NEMA 4X) available with optional single or double pole thermostat
- Explosion resistant (NEMA 7)
 class 1, groups C and D
 explosion resistant—available
 with optional single or double pole
 thermostat. For class 1, group B
 enclosures, consult your Watlow
 representative or refer to CSA
 specifications on page 271.
- Explosion/moisture resistant (NEMA 7/4) combination—

available with optional single or double pole thermostat

Note: Unless otherwise stated on the accompanying illustrations, both WATROD and FIREBAR screw plugs are centered on the terminal enclosure. To order, add the suffix letter(s) to the screw plug heater's base code number. This is depicted on the *Stock* and *Options* ordering example on **page 336**. Also, specify class and group, if applicable.

Screw Plug

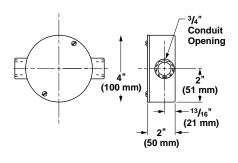
Tubular and Process Assemblies


Screw Plug Immersion Heaters

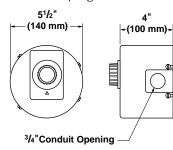
Options Continued

General Pupose (NEMA 1)

Single Pole Thermostat


All screw plug sizes

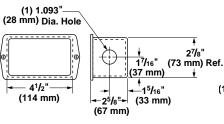
Moisture Resistant NEMA 4


Without Thermostat

All screw plug sizes

Double Pole Thermostat

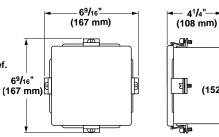
All screw plug sizes

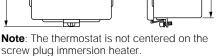


Caution:

Explosion-resistant terminal enclosures are intended to provide explosion containment in the electrical termination/wiring enclosure only. No portion of the assembly outside of this enclosure is covered under this NEMA rating. NEMA rating effectiveness may be compromised by abuse or misapplication.

Single Pole Thermostat


1" & 11/4" NPT-1 WATROD Element



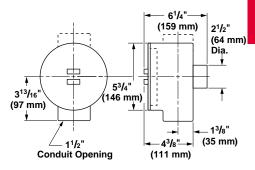
Note: The thermostat is not centered on the WATROD screw plug immersion heater.

Single or Double Pole Thermostat

11/4" NPT-2 WATROD Elements 11/4 " NPT-1 FIREBAR Element All 2" & 2 1/2" NPT screw plugs

(152 mm)

Explosion/Moisture Resistant (NEMA 7 or 7/4) ①


Without Thermostat

All WATROD screw plugs

33/4" 29/16" 95 mm) (65 mm) ∟ 21**/**32" (17 mm) 31/16" **Conduit Opening** (78 mm)

Single or Double Pole Thermostat

11/4" NPT-1 FIREBAR Element All WATROD screw plugs

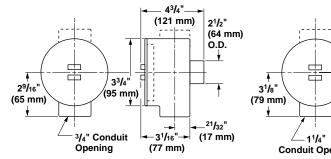
Screw Plug Immersion Heaters

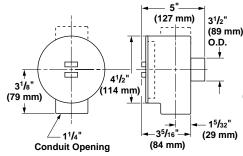
Options

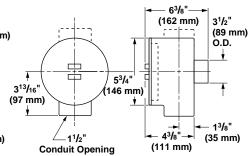
Continued

Explosion/Moisture Resistant (NEMA 7 or 7/4) 10

Without Thermostat


11/4" NPT--1 FIREBAR element


Without Thermostat


21/2 " NPT-3 FIREBAR elements

Single or Double Pole Thermostat

21/2" NPT-3 FIREBAR elements

[®] All NEMA 7/4 rated terminal enclosures supplied with a gasket for the cover.

CSA Certified Enclosures

CSA certified moisture and/or explosion resistant terminal enclosures protect wiring in hazardous gas environments. These terminal enclosures, covered under CSA file number 61707, are available on all WATROD and FIREBAR screw plug immersion heaters. For additional information, consult your Watlow representative.

To order, specify **CSA certified enclosure**, **process temperature** (°F), maximum **working pressure** of application (psig), **media** being heated and heater **mounting orientation** (horizontal or vertical) and **screw plug size**.

Pilot Light

The optional pilot light gives the operator visual indication of heater on or off power status.

The PL10 pilot light is configured to a maximum 250V~(ac), and supplied with six inch (150 mm) leads.

The PL11 pilot light is rated for 480V~(ac), and supplied with four inch (100 mm) leads.

Pilot lights may be attached to either single or double pole thermostats with general purpose (NEMA 1) enclosure only. For moisture or explosion resistant terminal enclosures (NEMA 4 or NEMA 7), consult factory.

To order, refer to the *Build-a-Code* chart on **page 336**.

Thermostats

To provide process temperature control, Watlow offers optional single pole, single throw (SPST) and double pole, single throw (DPST) thermostats.

Unless otherwise specified, thermostats are mounted inside the terminal enclosure. For details and ordering information, refer to *Thermostats* on pages 423 to 425. Please verify that the thermostat's sensing bulb O.D. is compatible with the screw plug's thermowell I.D.

Screw Plug Immersion Heaters Options

Continued

Thermocouples

Type J or K thermocouples offer extremely accurate sensing of process and/or sheath temperatures. A thermocouple may be inserted into the thermowell or attached to the heater's sheath.

Thermocouples are supplied with 120 inch (305 mm) leads (longer lead lengths available). Unless otherwise specified, thermocouples are supplied with temperature ranges detailed on the *Thermocouple Types* chart.

Using a thermocouple requires an appropriate temperature and power control. These must be purchased

separately. Watlow offers a wide variety of temperature and power controls to meet virtually all applications. Temperature controls can be configured to accept process variable inputs, too. Consult your Watlow representative for details.

To order, specify **Type J** or **K** thermocouple and lead length.

Indicate if the thermocouple is for process temperature sensing or heater sheath high-limit protection. Please specify if the screw plug will be mounted vertical or horizontal in the tank. If vertical, indicate if the housing is on top or bottom.

If the screw plug heater is mounted in an in-line circulation heating application, indicate flow direction relative to the heater's enclosure.

Thermocouple Types

ASTM	Conductor		mended ^① ture Range	
Туре	Positive	Negative	°F	(°C)
J	Iron	Constantan	0 to 1000	(-20 to 540)
	(Magnetic)	(Non-Magnetic)		
K	Chromel®	Alumel®	0 to 2000	(-20 to 1100)
	(non-magnetic) (Magnetic)		

Type J and Type K thermocouples are rated 32 to 1382°F and 32 to 2282°F (0-750°C and 0-1250°C), respectively. Watlow does not recommend exceeding temperature ranges shown on this chart for the tubular product line.

Wattages and Voltages

Watlow routinely supplies screw plug immersion heaters with 120 to 480V~(ac) as well as wattages from

250 watts to 38kW. If required, Watlow will configure heaters with voltages and wattages outside these parameters. For more information on special voltage and wattage configurations, consult your Watlow representative.

Sheath Materials

The following sheath materials are available on WATROD and FIREBAR heating elements:

Standard Sheath Materials

WATROD	Incoloy®
	316 stainless steel
	Steel
	Copper
FIREBAR	Incoloy®

Made-to-Order Sheath Materials

WATROD	304 stainless steel
	Monel®
FIREBAR	304 stainless steel

Exotic Sheath Materials

Consult your Watlow representative for details and availability.

External Finishing

Passivation

During the manufacturing process, particles of iron or tool steel may become embedded in the stainless steel or alloy sheath. If not removed, these particles may corrode,

produce rust spots and/or contaminate the process. For critical applications, passivation will remove free iron from the sheath. To order, specify **passivation**.

Other Finishes

Simple belt polishing and glass beading are available to meet cosmetic demands. Consult factory for details.

Screw Plug Immersion Heaters

Options

Continued

Screw Plug Materials

The following screw plug materials are available:

To order, specify **screw plug size** and **material**.

Standard Screw Plug Materials

WATROD	304 stainless steel
	316 stainless steel
	Steel
	Brass
FIREBAR	304 stainless steel

Made-to-Order Plug Materials

For both WATROD and FIREBAR, consult factory about details and availability.

Screw Plug Sizes

Including European

- **NPT**-1, 1¼, 2, 2½ inch
- Gas-G1¼, G1½, G 2 inch (brass only)

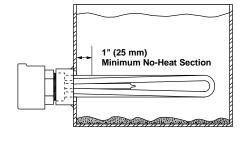
 BSP-1½ inch (stainless steel only)

Consult factory for sizes and materials not listed.

To order, specify **size**, **style** (NPT, Gas or BSP) and material.

BSP = British Standard Pipe Gas = Gas pipe standard

Screw Plug to Flange Adaptors

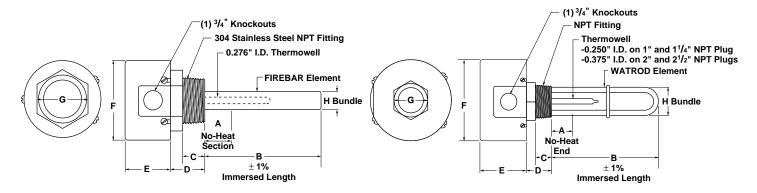

Screw plug to flange adaptors permit replacing flange heaters with screw plug heaters. To order, specify the appropriate code number.

Screw Plug to Flange Adaptors

	Screw Plug		Esti	mated		
	to Flange		Shipp	oing Wt.		Code
	Adaptor Sizes	Material	lbs	(kg)	Availability	Number
Γ	1 ¼ to 3″-150#	Steel	13	(5.9)	Stock	125X3SA
	2 ½ to 3"-150#	Steel	11	(5.0)	Stock	250X3SA
	2 ½ to 4"-150#	Steel	16	(7.3)	Stock	250X4SA
	2 ½ to 5"-150#	Steel	25	(11.3)	Stock	250X5SA
	2 ½ to 6"-150#	Steel	33	(15.0)	Stock	250X6SA

Application Hints

- Select the recommended sheath material and watt density for the substance being heated. Use the Supplemental Applications Chart on pages 263 to 266. If unable to determine the correct heater material and type, consult your Watlow representative.
- Extend the element's no-heat section completely into the fluid being heated to help prevent premature heater failure. See accompanying illustration for proper no-heat section placement.
- Locate screw plug heater low in the tank, but above the sludge level.



- Choose a FIREBAR element when your application requires a smaller system package or lower watt density.
- Ensure wiring integrity by making sure terminal enclosure temperature does not exceed 400°F (205°C).
- Keep electrical connections clean, dry and tight.

- Minimize problems associated with low liquid level conditions by using a low liquid level sensor or sheath temperature high-limit control.
- Periodically remove the screw plug assembly for inspection and clean the heating element(s). This preventive maintenance will reduce premature failure and optimize heater performance.
- Refer to the Installation and Maintenance Instructions for correct orientation of FIREBAR elements. Correct element orientation to flow minimizes pressure drop, increases buoyancy force and heater performance.

Screw Plug Immersion Heaters

Screw Plug Heater Dimensions

WATROD and FIREBAR Screw Plug Immersion Heater Dimensions

Heater Type	NPT Size in	A Dim	nension (mm)	C Dim	ension (mm)	D Dim	ension (mm)	E Din in	nension (mm)	F Din	nension (mm)	G Dim	ension (mm)	H Dim in	ension* (mm)
WATROD	1	1	(25)	7∕8	(22)	1 1/4	(32)	2 %	(67)	4 %	(117)	1 ¾	(35)	1 1//s	(29)
WATROD	1 1/4	1 ¹5/16	(24)	¹⁵ /16	(24)	1 5/16	(33)	2 %	(67)	4 %	(117)	1 3/4	(44)	1 ¾	(35)
WATROD	2 Steel	2 1/16	(65)	1	(25)	1 11/16	(43)	2 %	(67)	4 %	(117)	2 ½	(64)	2 1/4	(57)
WATROD	2 Brass	2 11/16	(68)	1 1/16	(27)	1 %	(40)	2 %	(67)	4 %	(117)	2 ½	(64)	2 1/4	(57)
WATROD	2 S. Steel	2 13/16	(71)	1	(25)	1 %	(41)	2 %	(67)	4 %	(117)	2 ½	(64)	2 1/4	(49)
WATROD	2 ½	2 3/16	(56)	1 ⅓6	(33)	2 1/1.6	(52)	2 %	(67)	4 %	(117)	3 ½	(76)	2 ½	(64)
FIREBAR	1 1/4	3 %	(98)	¹³ / ₁₆	(21)	1 1/46	(27)	2 %	(67)	4 %	(117)	1 3/4	(44)	1 ¾	(35)
FIREBAR	2 ½	3 ¾	(86)	1 1/4	(32)	1 ½	(38)	2 %	(67)	4 %	(117)	3 ½	(76)	2 ½	(64)

^{*} Note: All plug bundles fit into equivalent NPT coupling. They do not fit in equivalent pipe sizes.

1" NPT Screw Plug - WATROD Element

WATROD		Imme	ersed	Co	Est.	Ship.	
Description	kW	B Dime	ension (mm)	120V∼(ac) 1-Phase	240V~(ac) 1-Phase	Weight lbs (kg)	
Application:							
60 W/in ²	0.5	4 ½	(114)	BCC4J1	BCC4J10	3	(2)
Brass Plug	0.75	61/2	(165)	BCC6J1	BCC6J10	3	(2)
1-Copper	1.0	6%	(168)	BCC6L1	BCC6L10	3	(2)
(9.3 W/cm ²)	1.25	8	(203)	BCC8A1	BCC8A10	4	(2)
	1.5	10%	(270)	BCC10L1	BCC10L10	4	(2)
	2.0	12 ½	(318)	BCC12J1	BCC12J10	5	(3)
	2.5	14 ¾	(375)	BCC14N1	BCC14N10	5	(3)
	3.0	16¾	(426)	BCC16N1	BCC16N10	6	(3)
	4.0	21	(533)		BCC21A10	6	(3)

Applications: Lightweight Oils, Degreasing Solutions, Heat Transfer Oils

23 W/in ²	0.25	61/2	(165)	BCS6J1	BCS6J10	3	(2)
Steel Plug	0.35	9 1/4	(235)	BCS9E1	BCS9E10	4	(2)
1-Steel	0.5	9 %	(238)	BCS9G1	BCS9G10	4	(2)
(3.6 W/cm ²)	0.75	13½	(343)	BCS13J1	BCS13J10	5	(3)
	1.0	16¾	(425)	BCS16N1	BCS16N10	6	(3)
	1.5	23¾	(603)	BCS23N1	BCS23N10	7	(4)

All heating elements are Assembly Stock unless otherwise noted.

Availability

Assembly Stock: Three to five working days

Screw Plug Immersion Heaters

11/4" NPT Screw Plug - WATROD Element

WATROD		Imme	ersed		Code No.		Est. S	hip.
Description	kW	B Dimension inch (mm)		120V~(ac) 1-Phase	120/240V~(ac) 1-Phase	240V~(ac) 1-Phase	Weig lbs	ght (kg)
Application:	Clean	Wate	r					
60 W/in ²	0.5	4 %	(111)	BDC4G1		BDC4G10	3	(2)
Brass Plug	0.75	6¾	(162)	BDC6G1		BDC6G10	3	(2)
1-Copper								
(9.3 W/cm ²)								
60 W/in ² ^④	1.0	4 ¾	(111)		BEC4G6		4	(2)
Brass Plug	1.5	6¾	(162)		BEC6G6		4	(2)
2-Copper	2.0	8 ½	(216)		BEC8J6		5	(3)
(9.3 W/cm ²)	2.5	10¾	(273)		BEC10N6		5	(3)
	3.0	15	(381)		BEC15A6		6	(3)
	4.0	19	(483)			BEC19A10	7	(4)
	5.0	23 ½	(597)			BEC23J10	8	(4)
	6.0	27 ½	(699)			BEC27J10	9	(4)

Applications: Lightweight Oils, Degreasing Solutions, Heat Transfer Oils

23 W/in ² ^④	0.5	6¾	(162)	BES6G6	4	(2)
Steel Plug	0.5	7 ⅓	(187)	BES7G6	4	(2)
2-Steel	0.7	8 %	(225)	BES8R6	5	(3)
(3.6 W/cm ²)	0.75	10 1/16	(256)	BES10B6	5	(3)
	1.0	12¾	(324)	BES12N6	6	(3)
	1.5	19¾	(492)	BES19G6	7	(4)
	2.0	25 ¾	(645)	BES25G6	8	(4)
	3.0	36 %	(937)	BES36R6	9	(4)

Applications: Forced Air and Gases, Caustic Solutions, Degreasing Solutions

23 W/in ² ^④	1.0	13¾ (340)	BEN13G6	6 (3)
304 SS Plug	1.5	19 (483)	BEN19A6	7 (4)
2-Incoloy®	2.0	24% (619)	BEN24G6	8 (4)
(3.6 W/cm ²)				

11/4" NPT Screw Plug- FIREBAR Element

FIREBAR		Immersed		Est. S	hip.		
Description	kW	B-Dimension inch (mm)	240V~(ac) 1-Phase	240V~(ac) 3-Phase	480V~(ac) 3-Phase	Wei lbs	ght (kg)
Applications	: Clea	n and Potal	ole Water				
90 W/in ² ®	1.5	7% (194)	BDNF7R10 2 7		BDNF7R11 2 7	5	(3)
304 SS Plug	3.0	11 ½ (283)	BDNF11G10 2 7		BDNF11G11 2 7	6	(3)
1-Incoloy®	5.0	16 % (410)		BDNF16G3	BDNF16G5	7	(4)
(14 W/cm ²)	6.5	19 % (486)		BDNF19G3	BDNF19G5	8	(4)
	8.5	24 % (619)		BDNF24L3	BDNF24L5	9	(4)
	10.5	29% (753)		BDNF29R3	BDNF29R5	10	(5)
	12.7	34% (879)		BDNF34R3	BDNF34R5	11	(5)
	17.0	45 ½ (1146)		BDNF45G3	BDNF45G5	13	(6)
	21.5	55% (1413)			BDNF55R5	15	(7)
						CONTIN	VIJED

All heating elements are Assembly Stock unless otherwise noted.

Availability

Assembly Stock: Three to five working days

Standard: 10 working days

② Standard

Wired for higher voltage.

⑦ Not available as 3-phase – 1-phase only.

® Can be wired 1-phase.

Screw Plug Immersion Heaters

11/4" NPT Screw Plug - FIREBAR Element

FIREBAR		Imme	ersed		Code No.		Est. S	
Description	kW		ension	240V~(ac)	240V~(ac)	480V~(ac)	Weig	
		inch	(mm)	1-Phase	3-Phase	3-Phase	lbs	(kg)
Applications	s: Proc	ess V	Vater,	Ethylene Glyco	ol (50%)			
45 W/in ² ®	2.0	13	(330)		BDNF13A27		6	(3)
304 SS Plug	2.5	15 ½	(394)		BDNF15J27		7	(4)
1-Incoloy®	3.0	18	(457)		BDNF18A27		8	(4)
(7 W/cm ²)	4.0	22 ½	(572)		BDNF22J27	BDNF22J28	9	(4)
	5.0	27 ½	(699)		BDNF27J27	BDNF27J28	10	(5)
	6.0	32 ½	(826)		BDNF32J27	BDNF32J28	11	(5)
	8.0	42	(1067)		BDNF42A27	BDNF42A28	13	(6)
	10.0	51 ½	(1308)		BDNF51J27	BDNF51J28	15	(7)
Annlications	e. Coo	kina C	Tile F	thylene Glycol	(100%)			
				arylerie Grycor	· · · · · · · · · · · · · · · · · · ·	DDNE40042	7	(4)
30 W/in ² ®	1.7 2.2	16 %	(410)		BDNF16G12	BDNF16G13	7	(4)
304 SS Plug		19 %	(486)		BDNF19G12	BDNF19G13	8	(4)
1-Incoloy®	2.8	24 %	(619)		BDNF24L12	BDNF24L13	9	(4)
(4.7 W/cm ²)	3.5	29 %	(752)		BDNF29R12	BDNF29R13	10	(5)
	4.25	34 %	(880)		BDNF34R12	BDNF34R13	11	(5)
	5.7		(1146)		BDNF45G12	BDNF45G13	13	(6)
	7.2	55 %	(1413)		BDNF55R12	BDNF55R13	15	(7)
Applications	s: Heat	Trans	sfer O	ils, Mineral Oil	s, Degreasing	Solutions		
23 W/in ² ®	1.25		(410)	,	BDNF16G20		7	(4)
304 SS Plug	1.65	191/8	(486)		BDNF19G20		8	(4)
1-Incoloy®	2.15	24 %	(619)		BDNF24L20	BDNF24L19	9	(4)
(3.6 W/cm ²)	2.65		(752)		BDNF29R20	BDNF29R19	10	(5)
,	3.2	34 %	(879)		BDNF34R20	BDNF34R19	11	(5)
	4.25		(1146)		BDNF45G20	BDNF45G19	13	(6)
	5.4		(1413)		BDNF55R20	BDNF55R19	15	(6)
				<u></u>				
				Oils, Heat Trai		prication Oils,		
15 W/in ² ^③	0.67	1	(330)		BDNF13A29		6	(3)
304 SS Plug	0.83		(394)		BDNF15J29		7	(4)
1-Incoloy®	1.0	18	(457)		BDNF18A29		8	(4)
(2.3 W/cm ²)	1.33	22 1/2	(572)		BDNF22J29	BDNF22J30	9	(4)
	1.67	27 ½	(699)		BDNF27J29	BDNF27J30	10	(5)
	2.0	32 ½	(826)		BDNF32J29	BDNF32J30	11	(5)
	2.67	42	(1067)		BDNF42A29	BDNF42A30	13	(6)

BDNF16G22

BDNF19G22

BDNF24L22

BDNF29R22

BDNF34R22

BDNF45G22

BDNF55R22

③ Must be operated 3-phase only.

0.43

0.55

0.7

0.88

1.08

1.4

1.8

Applications: Bunker C and #6 Fuel Oils, Asphalt

16% (410)

19 % (486)

24 % (619)

29% (753)

34% (880)

45 % (1146)

55% (1413)

8 W/in2 3

304 SS Plug

1-Incoloy®

(1.3 W/cm²)

All heating elements are Assembly Stock unless otherwise noted. **Availability**

Assembly Stock: Three to five

7 (4)

9 (4)

11 (5)

13 (6)

15 (7)

BDNF24L21

BDNF29R21

BDNF34R21

BDNF45G21

BDNF55R21

8 (4)

10 (5)

[®] Can be wired 1-phase.

Screw Plug Immersion Heaters

2" NPT Screw Plug - WATROD Element (Note: Will not fit into a two inch pipe)

WATROD		Imm	ersed	d Code No.						
Description	kW		ension (mm)	120V∼(ac) 1-Phase	120/240V~(ac) 1-Phase	240/480V~(ac) 1-Phase	240V~(ac) 3-Phase	480V~(ac) 3-Phase	We lbs	i ght (kg
pplication:	Clean			TTHOO	TTHEO	TTHOO	o i naco	o i naco		\ \
60 W/in ² ^④	2.0	8 1/4	(206)		BGC78C6	BGC78C7			4	(2
Brass Plug	3.0	111//	(283)		BGC711C6	BGC711C7			5	(3
2-Copper	4.0	15 1/2	(384)		BGC715C6	BGC715C7			6	(3
(9.3 W/cm ²)	5.0	181⁄⁄₃	(460)		BGC718C6	BGC718C7 ^②			6	(3
	6.0	21 1/4	(537)			BGC721C7			7	(4
	8.0	26%	(676)			BGC726L7			7	(4
	10.0	32 1/4	(816)			BGC732C7			8	(4
60 W/in ²	3.0	81/4	(206)	BHC78C1			BHC78C3	BHC78C13 2 3	5	(3
Brass Plug	4.5	111//	(283)	BHC711C1			BHC711C3	BHC711C5	6	(3
3-Copper	6.0	15 1/2	(384)				BHC715C3	BHC715C5	7	(4
(9.3 W/cm ²)	7.5	181/4	(460)				BHC718C3	BHC718C5	7	(4
	9.0	211/4	(537)				BHC721C3	BHC721C5	8	(4
	12.0	26%	(676)				BHC726L3	BHC726L5	8	(4
	15.0	32 1/8	(816)				BHC732C3	BHC732C5	9	(4
pplication:	Proce	ss Wa	ater							
48 W/in ² ^④	2.0	9 3/4	(248)		BGN79N6	BGN79N7			4	(2
304 SS Plug	3.0	131/4	(337)		BGN713E6	BGN713E7			5	(3
2-Incoloy®	4.0	17¾	(451)		BGN717N6	BGN717N7			6	(3
(7.5 W/cm ²)	5.0	201/4	(514)		BGN720E6	BGN720E7			7	(4
	6.0	25 1/4	(641)			BGN725E7			7	(4
	8.0	32¾	(832)			BGN732N7			8	(4
	10.0	40 1/4	(1022)			BGN740E7			9	(4
48 W/in ² ^⑤	3.0	9 3/4	(248)	BHN79N1			BHN79N3 ^②	BHN79N5	5	(3
304 SS Plug	4.5	131/4	(337)	BHN713E1			BHN713E3 ^②	BHN713E5 ^②	6	(3
3-Incoloy®	6.0	17¾	(451)				BHN717N3 ²	BHN717N5 ²	7	(4
(7.5 W/cm ²)	7.5	201/4	(514)				BHN720E3 ^②	BHN720E5 ²	8	(4
	9.0	25 1/4	(641)				BHN725E3 ^②	BHN725E5 ^②	9	(4
	12.0	32¾	(832)				BHN732N3 ^②	BHN732N5 ^②	9	(4
	15.0	40 1/4	(1022)				BHN740E3	BHN740E5 ^②	10	(5
										(5

All heating elements are Assembly Stock unless otherwise noted.

Availability

Assembly Stock: Three to five working days

2 Stock

3 Must be operated 3-phase only.

Wired for higher voltage.

Screw Plug Immersion Heaters

2" NPT Screw Plug - WATROD Element (Note: Will not fit into a two inch pipe)

WATROD		Immersed			Code No.			Est. Shi
Description	kW	B Dimension inch (mm)	120V~(ac) 1-Phase	120/240V~(ac) 1-Phase	240/480V~(ac) 1-Phase	240V~(ac) 3-Phase	480V~(ac) 3-Phase	Weigh lbs (k
pplications	: Ford	ed Air and	Gases, Caustic	Solutions, De	egreasing Solu	ıtions		
23 W/in ² ^⑤ ^⑥ 304 SS Plug 3-Incoloy [®] (3.6 W/cm ²)	3.0 4.5 6.0 7.5	17 % (451) 25 % (641) 32 % (832) 40 % (1022)	BHNA17N1 BHNA25E1			BHNA17N3 ^① BHNA25E3 BHNA32N3 BHNA40E3	BHNA17N5 ^① BHNA25E5 BHNA32N5 ^① BHNA40E5	7 (4 9 (4 9 (4
	9.0 12.5 15.0	47¾ (1213) 64¼ (1632) 76¾ (1950)				BHNA47N3 BHNA64E3 BHNA76E3	BHNA47N5 BHNA64E5 BHNA76E5	11 (! 15 (: 18 (:
pplications	: Ligh	tweight Oils	s, Degreasing S	Solutions, Hea	t Transfer Oils	6		
23 W/in ² [®] Steel Plug 2-Steel (3.6 W/cm ²)	1.0 1.5 2.0 2.5	9½ (241) 13½ (343) 17½ (445) 20½ (521)		BGS79J6 BGS713J6 ^① BGS717J6 ^① BGS720J6	BGS79J7 BGS713J7 ^① BGS717J7 BGS720J7			4 (2 5 (3 6 (3 7 (4
	3.0 4.0 5.0 6.0	25 (635) 32½ (826) 40 (1016) 47½ (1207)		BGS725A6 BGS732J6 BGS740A6	BGS725A7 BGS732J7 BGS740A7 BGS747J7			7 (4 8 (4 9 (4 10 (9
23 W/in ² Steel Plug 3-Steel (3.6 W/cm ²)	1.5 3.0 4.5 6.0	9½ (241) 17½ (445) 25 (635) 32½ (826)	BHS79J1 BHS717J1 BHS725A1			BHS79J3 BHS717J3 BHS725A3 BHS732J3	BHS79J13 ® BHS717J5 ® BHS725A5 BHS732J5	5 (i 7 (i 9 (i 12 (i
	7.5 9.0 12.5	40 (1016) 47½ (1207) 64 (1626)				BHS740A3 BHS747J3 BHS764A3	BHS740A5 BHS747J5 BHS764A5	13 ((13 ((17 ((
pplications	: Med	ium Weight	Oils, Heat Tran	nsfer Oils, Liq	uid Paraffin	I	1	
16 W/in ² [®] 304 SS Plug 3-Incoloy [®] (2.5 W/cm ²)	1.0 1.5 2.0 2.5	9 ½ (248) 13 ¼ (337) 17 ¾ (451) 20 ¼ (514)				BHN79N12 BHN713E12 BHN717N12 BHN720E12	BHN79N13 BHN713E13 BHN717N13 BHN720E13	5 (3 6 (3 7 (4 8 (4
	3.0 4.0 5.0 6.0	25 ¼ (641) 32 ¾ (832) 40 ¼ (1022) 47 ¾ (1213)				BHN725E12 BHN732N12 BHN740E12 BHN747N12	BHN725E13 BHN732N13 BHN740E13 BHN747N13	9 (4 9 (4 10 (9 11 (9
15 W/in ² Steel Plug 3-Steel (2.3 W/cm ²)	1.5 2.0 2.5 3.0	13 ¼ (337) 17 ½ (445) 20 ½ (521) 25 (635)				BHSS13E3 BHSS17J3 BHSS20J3 BHSS25A3	BHSS13E13 ^③ BHSS17J5 BHSS20J5 BHSS25A5	6 (4 7 (4 8 (4 9 (4
	4.0 5.0 6.0 7.5	32½ (826) 40 (1016) 47½ (1207) 58½ (1486)				BHSS32J3 BHSS40A3 BHSS47J3 BHSS58J3	BHSS32J5 BHSS40A5 BHSS47J5 BHSS58J5	12 (d 13 (d 13 (d 16 (s

All heating elements are Assembly Stock unless otherwise noted.

Availability

Assembly Stock: Three to five working days **Stock**: Same day shipment

9.0

69 3/4 (1772)

- ① Stock
- 3 3-phase wye only.
- Wired for higher voltage.
- ⑤ 240V~(ac) can be wired wye and operated at 480V~(ac) 3-phase to produce ¼ more kW and watt density.

BHSS69N3

BHSS69N5

© Can be rewired wye to produce % of original kW and watt density (3-phase only).

(9)

20

Screw Plug Immersion Heaters

2½" NPT Screw Plug - WATROD Element

WATROD		lmm	ersed		Code No.		Est. S		
Description	kW	B Dimension inch (mm)		120V~(ac) 240V~(ac) 1-Phase 3-Phase		480V~(ac) 3-Phase	Wei lbs	ight (kg)	
Applications	: Deio	nized	Water	r, Demineralize	ed Water				
60 W/in ²	3.0	7 %	(194)	BLR77L1	BLR77L3	BLR77L5	6	(3)	
316 SS Plug	4.5	10%	(270)	BLR710L1	BLR710L3	BLR710L5	7	(4)	
3-316 SS	6.0	14 %	(372)		BLR714L3	BLR714L5	9	(4)	
Passivated	7.5	17 %	(448)		BLR717L3	BLR717L5	9	(4)	
(9.3 W/cm ²)	9.0	20%	(524)		BLR720L3	BLR720L5	11	(5)	
	12.0	26 1/8	(664)		BLR726C3	BLR726C5	12	(6)	
	15.0	31%	(803)		BLR731L3	BLR731L5	14	(7)	
	18.0	37 1/8	(943)		BLR737C3	BLR737C5	15	(7	
Application:	Clean	Wate	r				•		
60 W/in ²	3.0	7 %	(194)	BLC77L1	BLC77L3	BLC77L13	6	(3)	
Brass Plug	4.5	10%	(270)	BLC710L1	BLC710L3	BLC710L5	7	(4	
3-Copper	6.0	14%	(371)		BLC714L3	BLC714L5	9	(4	
(9.3 W/cm ²)	7.5	17 %	(448)		BLC717L3	BLC717L5	9	(4	
	9.0	20 %	(524)		BLC720L3	BLC720L5 ①	11	(5	
	12.0	26 1/8	(664)		BLC726C3	BLC726C5 ①	12	(6	
	15.0	31%	(803)		BLC731L3	BLC731L5	14	(7	
	18.0	37 1/8	(943)		BLC737C3	BLC737C5	15	(7	
Application:	Proce	ss Wa	ater						
48 W/in²	3.0	9 %	(238)	BLN79G1	BLN79G3	BLN79G5	6	(3)	
304 SS Plug	4.5	12 %	(327)	BLN712R1	BLN712R3	BLN712R5	7	(4	
3-Incoloy®	6.0	17 %	(441)		BLN717G3	BLN717G5 ^①	9	(4)	
(7.5 W/cm ²)	7.5	19 %	(505)		BLN719R3	BLN719R5	11	(5	
	9.0	24 %	(632)		BLN724R3	BLN724R5 ^①	12	(6)	
	12.0	32 %	(822)		BLN732G3	BLN732G5 ①	14	(7)	
	15.0	39 %	(1013)		BLN739R3	BLN739R5	15	(7	
	18.0	47 %	(1203)		BLN747G3	BLN747G5 ^①	17	(8	
							CONTIN	II IE	

All heating elements are Assembly Stock unless otherwise noted.

Availability

Assembly Stock: Three to five working days Stock: Same day shipment

① Stock

Screw Plug

Tubular and Process Assemblies

Screw Plug Immersion Heaters

21/2" NPT Screw Plug - WATROD Element

WATROD		Immersed		Code No.		Est. Ship.
Description	kW	B Dimension inch (mm)	120V∼(ac) 1-Phase	240V~(ac) 3-Phase	480V∼(ac) 3-Phase	Weight Ibs (kg)
Applications	s: For	ed Air and	Gases, Causti	Solutions, De	egreasing Solu	ıtions
23 W/in ² ⁵⁶	3.0	17% (441)	BLNA17G1	BLNA17G3	BLNA17G5	9 (4)
304 SS Plug	4.5	24 % (632)	BLNA24R1	BLNA24R3	BLNA24R5	12 (5)
3-Incoloy®	6.0	32 % (822)		BLNA32G3	BLNA32G5 ^①	14 (7)
(3.6 W/cm ²)	7.5	39% (1013)		BLNA39R3	BLNA39R5	15 (7)
	9.0	47% (1203)		BLNA47G3	BLNA47G5	17 (8)
	12.5	63% (1622)		BLNA63R3	BLNA63R5	20 (9)
	15.0	76% (1940)		BLNA76G3	BLNA76G5	23 (11)
Applications	s: Ligh	tweight Oils	s, Degreasing	Solutions, Hea	t Transfer Oils	\$
23 W/in ² ⁶	3.0	17 ¼ (438)	BLS717E1	BLS717E3	BLS717E5 ^①	9 (4)
Steel Plug	4.5	24¾ (629)	BLS724N1	BLS724N3	BLS724N5	12 (6)
3-Steel	6.0	32 ¼ (819)		BLS732E3	BLS732E5 ^①	14 (7)
(3.6 W/cm ²)	7.5	39¾ (1010)		BLS739N3	BLS739N5	15 (7)
	9.0	47 ¼ (1200)		BLS747E3	BLS747E5	17 (8)
	12.5	63¾ (1619)		BLS763N3	BLS763N5	20 (9)
	15.0	76¼ (1937)		BLS776E3	BLS776E5	27 (13)
Applications	s: Med	lium Weight	Oils, Heat Tra	nsfer Oils, Liq	uid Paraffin	
16 W/in ² ^③	1.0	9 % (238)		BLN79G12	BLN79G13	6 (3)
304 SS Plug	1.5	12% (327)		BLN712R12	BLN712R13	7 (4)
3-Incoloy®	2.0	17% (441)		BLN717G12	BLN717G13	9 (4)
(2.5 W/cm ²)	2.5	19% (505)		BLN719R12	BLN719R13	11 (5)
	3.0	24 % (632)		BLN724R12	BLN724R13	12 (6)
	4.0	32% (822)		BLN732G12	BLN732G13	14 (7)
	5.0	39% (1013)		BLN739R12	BLN739R13	15 (7)
	6.0	47% (1203)		BLN747G12	BLN747G13	17 (8)
Applications	s: Bun	ker C and #	6 Fuel Oils			
8 W/in ² ^③	1.0	17 ¼ (438)		BLS717E12	BLS717E13	9 (4)
Steel Plug	1.5	24¾ (629)		BLS724N12	BLS724N13	12 (6)
3-Steel	2.0	32 ¼ (819)		BLS732E12	BLS732E13	14 (7)
(1.3 W/cm ²)	2.5	39¾ (1010)		BLS739N12	BLS739N13	15 (7)

All heating elements are Assembly Stock unless otherwise noted.

3.0

4.0

5.0

47 1/4 (1200)

63¾ (1619)

76¼ (1937)

Availability

Assembly Stock: Three to five working days

Stock: Same day shipment

- ① Stock
- Must be operated 3-phase only.

BLS747E12

BLS763N12

BLS776E12

⑤ 240V~(ac) can be wired wye and operated at 480V~(ac) 3-phase to produce ½ more kW and watt density.

BLS747E13

BLS763N13

BLS776E13

17 (8)

20 (9)

23 (11)

⑥ Can be rewired wye to produce ⅓ of original kW and watt density (3-phase only).

Screw Plug Immersion Heaters

2½" NPT Screw Plug - FIREBAR Element

FIREBAR		Imme	ersed	Cod	de No.	Est. S	Ship
Description	kW	B Dim	ension	240V~(ac)	480V~(ac)	Wei	ght
		inch	(mm)	3-Phase	3-Phase	lbs	(kg)
Applications	: Clea	n and	Potal	ole Water			
90 W/in ^{2 ®}	15	15 1/3	(384)	BLNF15C3	BLNF15C5	10	(5)
304 SS Plug	20	18 1/8	(460)	BLNF18C3	BLNF18C5 ³	12	(6)
3-Incoloy®	25	23 1/8	(587)		BLNF23C5	14	(7)
(14 W/cm ²)	32	28 %	(727)		BLNF28L5	17	(8)
	38	33 %	(854)		BLNF33L5	18	(9)
Applications	: Proc	ess V	/ater,	Ethylene Glyc	ol (50%)		
45 W/in ² [®]	6	12	(305)	BLNF12A27		10	(5)
304 SS Plug	7.5	14 ½	(368)	BLNF14J27		11	(5)
3-Incoloy®	9	17	(432)	BLNF17A27		12	(6)
(7 W/cm ²)	12	21 ½	(546)	BLNF21J27	BLNF21J28	14	(7)
	15	26 ½	(673)	BLNF26J27	BLNF26J28	17	(8)
	18	31 ½	(800)	BLNF31J27	BLNF31J28	18	(9)
	24	41	(1041)		BLNF41A28	20	(9)
	30	50 ½	(1283)		BLNF50J28	22	(10)
Applications	: Coo	king C	Dils, E	thylene Glycol	(100%)		
30 W/in ^{2 ③}	5	15 1/4	(384)	BLNF15C12	BLNF15C13	10	(5)
304 SS Plug	6.5	18 1/8	(460)	BLNF18C12	BLNF18C13	12	(6)
3-Incoloy®	8.5	23 1/8	(587)	BLNF23C12	BLNF23C13	14	(7)
(4.7 W/cm ²)	10.5	28%	(727)	BLNF28L12	BLNF28L13	17	(8)
	12.8	33 %	(854)	BLNF33L12	BLNF33L13	18	(9)
	17	44 1/8	(1121)	BLNF44C12	BLNF44C13	20	(9)
	21.5	54%	(1388)		BLNF54L13	22	(10)
Applications	: Heat	Trans	sfer O	ils, Mineral Oil	s, Degreasing	Solut	tions

23 W/in ^{2 ®}	3.8	15 1/4	(384)	BLNF15C20		10	(5)
304 SS Plug	4.9	18 1/8	(460)	BLNF18C20		12	(6)
3-Incoloy®	6.4	23 1/4	(587)	BLNF23C20	BLNF23C19	14	(7)
(3.6 W/cm ²)	7.9	28 %	(727)	BLNF28L20	BLNF28L19	17	(8)
	9.6	33 %	(854)	BLNF33L20	BLNF33L19	18	(9)
	12.8	44 % ((1121)	BLNF44C20	BLNF44C19	20	(9)
	16.1	54% ((1387)	BLNF54L20	BLNF54L19	22	(10)
						CONTIN	IUED

All heating elements are Assembly Stock unless otherwise noted.

Availability

Assembly Stock: Three to five working days

Stock: Same day shipment

3 Must be operated 3-phase only.

® Can be wired 1-phase.

Screw Plug Immersion Heaters

2½" NPT Screw Plug - FIREBAR Element

FIREBAR		Immersed	Cod	e No.	Est. Ship.
Description	kW	B Dimension inch (mm)	240 V~(ac)	480V~(ac)	Weight Ibs (kg)
		IIICII (IIIIII)	3-Phase	3-Phase	ling (kg)

Applications: Medium Weight Oils, Heat Transfer Oils, Lubrication Oils, Liquid Paraffin

15 W/in ^{2 ③}	2	12	(305)	BLNF12A29		10	(5)
304 SS Plug	2.5	14 ½	(368)	BLNF14J29		11	(5)
3-Incoloy®	3	17	(432)	BLNF17A29		12	(6)
(2.3 W/cm ²)	4	21 ½	(546)	BLNF21J29	BLNF21J30	14	(7)
	5	26 ½	(673)	BLNF26J29	BLNF26J30	17	(8)
	6	31 ½	(800)	BLNF31J29	BLNF31J30	18	(9)
	8	41	(1041)	BLNF41A29	BLNF41A30	20	(9)
	10	50 ½	(1283)	BLNF50J29	BLNF50J30	22	(10)

Applications: Bunker C and #6 Fuel Oils, Asphalt

8 W/in ^{2 ®}	1.25	15 1/8	(384)	BLNF15C22		10	(5)
304 SS Plug	1.63	181/	(460)	BLNF18C22		12	(6)
3-Incoloy®	2.13	23 1/8	(587)	BLNF23C22	BLNF23C21	14	(7)
(1.3 W/cm ²)	2.63	28 %	(727)	BLNF28L22	BLNF28L21	17	(8)
	3.19	33%	(854)	BLNF33L22	BLNF33L21	18	(9)
	4.25	44 1/8	(1121)	BLNF44C22	BLNF44C21	20	(9)
	5.38	54 %	(1388)	BLNF54L22	BLNF54L21	22	(10)

All heating elements are Assembly Stock unless otherwise noted.

3 Must be operated 3-phase only.

Availability
Assembly Stock: Three to five working days
Stock: Same day shipment

Screw Plug Immersion Heaters

Immersion Heate Build-a-Code

Stock Screw Plug Code Number ^①

(Includes general purpose terminal enclosure (NEMA 1)

Optional Terminal Enclosure

S = General purpose with thermostat (NEMA 1)

W = Moisture resistant (NEMA 4) E = Explosion resistant (NEMA 7)

E/W = Explosion/moisture resistant (NEMA 7/4)

Optional Thermostat ² or Thermocouple ⁴ -

Optional Pilot Light ³

 $PL10 = 250V \sim (ac) Max.$ $PL11 = 480V \sim (ac) Max.$

- ① Screw plug immersion heaters are supplied with a general purpose terminal enclosure (NEMA 1). A thermostat will not fit inside the standard 2⁵/₈ inch (67 mm) tall general purpose terminal enclosure. If a thermostat is required, a taller terminal enclosure will be supplied.
- 2) Thermostat code numbers are shown in the Thermostat Stock chart on page 425.
- ③ Pilot lights are configured for general purpose enclosure (NEMA 1) applications. For pilot light availability with other terminal enclosure ratings, consult factory.
- Specify Type J or K thermocouple. If overtemp thermocouple specify orientation horizontal, vertical up or vertical down.

How to Order

To order a stock screw plug heater, please specify:

- Watlow code number
- NPT screw plug size and material
- · Volts/watts
- Phase
- Options
- Quantity

If our stock units do not meet your application needs, Watlow can provide made-to-order heaters. For a **made-to-order** unit, please specify:

- Application, including heated material, process temperature and flow rate, etc.
- · Volts/watts
- Watt density
- Phase
- Screw plug size, style and material
- · Element diameter
- Number of heating element(s)
- · Sheath material
- Immersed ('B' dimension) length
- · No-heat section below the plug
- Terminal enclosure type
- Options
- Quantity

Availability

Stock: Same day shipment

Assembly Stock: Three to five

F.O.B.: Hannibal, Missouri

working days

Modified Stock [⊕]: Five to seven working days

Standard: 10 working days

Made-to-Order: Four to six weeks

Options, complexity and quantity may affect availability and lead times. Consult factory.

Stock and assembly stock units with catalog options.

Screw Plug

Quick Ship

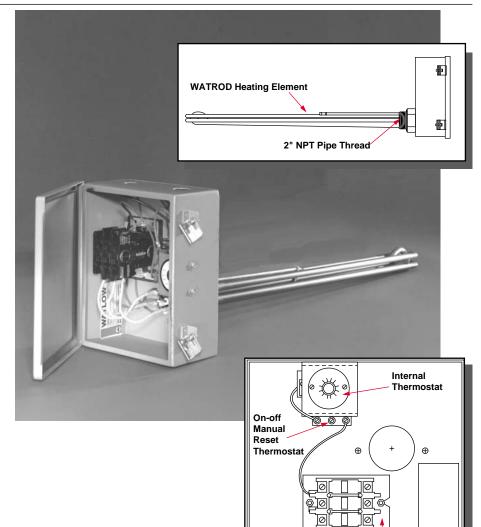
On stock chart units:

- · Five working days on all heaters
- 10 working days on special voltages and/or wattages
- · 15 working days on special element lengths

Tubular and Process Assemblies

Screw Plug **Immersion Heaters** with Control Assembly

Constructed from a WATROD screw plug heater, a moisture resistant (NEMA 4) terminal enclosure and built-in temperature sensor and power control, this assembly comes pre-wired and ready for hook-up to any 120V~(ac) control circuit.


Optional sheath materials, NPT screw plug sizes and materials, wattages, voltages and terminal enclosures extend application versatility.

Performance Capabilities

- Watt densities to 60 W/in² (9.3 W/cm²)
- · Wattages to 20kW
- Voltages to 600V~(ac)
- Incoloy® sheath temperatures to 1400°F (760°C)

Features and Benefits

- Three 0.475 inch (12 mm) diameter WATROD elements are brazed to a two inch NPT brass screw plug to produce a pressure-tight seal.
- **WATROD** hairpins are repressed (recompacted) after bending to maintain MgO density, dielectric strength, heat transfer and life.
- Two built-in thermostats, one on-off with manual reset, help ensure safe operation by automatically cycling on and off when process or sheath temperatures reach a predetermined set point selectable from 30° to 250°F (0° to 120°C).
- Internal mechanical contactor works on a 120V~(ac) control circuit to switch higher volts/amps to the heating elements.

Hinged, moisture resistant (NEMA 4) terminal enclosure

has two conduit openings to accommodate ¾ inch NPT conduit fittings.

- Terminal enclosures can be rotated to mate with existing conduits.
- Thermowells allow replacing the thermostat sensing element without draining the fluid being heated.

Applications

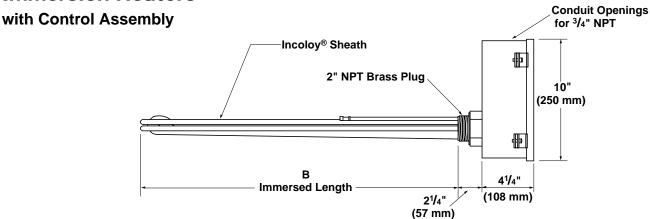
- Water heating
- Commercial dishwashers and glass washers

Mechanical Contactor

· Sterilizing equipment

Construction Features

Same as **Screw Plug Immersion** Heaters. See pages 321 to 322 for details.


Application Hints

Same as **Screw Plug Immersion Heaters**. See page 326 for details.

Accessories

Clamping Nut, Gasket and Washersfor mounting to thin-wall tanks, use optional clamping nut, gasket and washers. To order, specify NGW.

Screw Plug Immersion Heaters

2" NPT Brass Screw Plug With Control Box (Assembly Stock)

WATROD		Immersed			Code Number			Est	t.Net
Descript.	kW	Length	208V~(ac)	240V~(ac)	380V~(ac)	480V~(ac)	575V∼(ac)	We	eight
		Inch (mm)		3-Phase	3-Phase	3-Phase	3-Phase	lbs	(kg)
50 W/in ²	9	24¾ (629)		BHNB24N3W2C11		BHNB24N5W2C11	BHNB24N16W2C11	23	(10)
Brass Plug	12	30 (762)	BHNB30A2W2C11	BHNB30A3W2C11	BHNB30A8W2C11	BHNB30A5W2C11	BHNB30A16W2C11	24	(11)
3-Incoloy®	16	35% (905)	BHNB35L2W2C11	BHNB35L3W2C11	BHNB35L8W2C11	BHNB35L5W2C11	BHNB35L16W2C11	25	(11)
(7.8 W/cm ²)	20	45% (1159)		BHNB45L3W2C11	BHNB45L8W2C11	BHNB45L5W2C11	BHNB45L16W2C11	27	(12)

How to Order

To order an Assembly Stock unit, please specify:

- · Watlow code number
- Volts/watts
- · Options, if applicable
- Quantity

If our assembly stock units do not meet your application needs, Watlow can provide **made-to-order** assemblies. For made-to order units, please specify:

- Volts/watts
- Phase
- Screw plug size and materials
- · Number of elements
- · Sheath material
- Immersed ('B' dimension) length
- No-heat section below the plug
- Options
- Quantity

Availability

Assembly Stock: Five working days **Modified Stock** •: Five to seven working days

Made-to-Order: Four to six weeks Options, complexity and quantity may affect availability and lead times. Consult factory.

Replacement Heater Only

To order a replacement screw plug heater, simply delete the last five characters from the original *Screw Plug Immersion with Control Assembly* base code number.

① Assembly Stock units with catalog options.

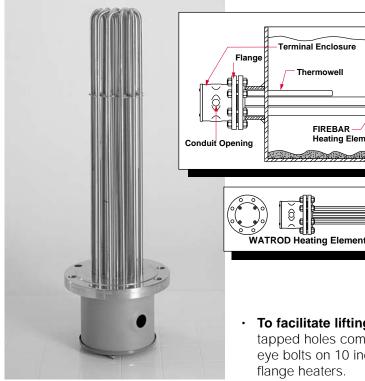
Quick Ship

- On stock chart units:
- Three to five working days on most heaters
- 10 working days on special voltages and/or wattages
- 15 working days on special element lengths

FIREBAR

Heating Element

Flange Immersion Heaters


Watlow flange heaters are easy to install and maintain. Designed for heating liquids and gases in tanks and pressure vessels, flange immersion heaters are ideal for applications requiring higher kilowatts.

Watlow flange heaters are made with WATROD or FIREBAR® tubular elements brazed or welded to a flange. Stock flange heaters are equipped with a general purpose (NEMA 1) terminal enclosure.

Flange heaters, with FIREBAR elements, also answer the need for liquid immersion applications requiring high kilowatts in small tanks. The FIREBAR element's unique flat surface geometry packs more power in a smaller bundle, with lower watt density, making it especially well suited for petroleumbased liquid heating applications.

Performance Capabilities

- Watt densities to 100 W/in² (15.5 W/cm²)
- · Wattages to one megawatt
- UL® and CSA component recognition to 480V~(ac) and 600V~(ac) respectively
- Incoloy® sheath temperatures to 1600°F (870°C)
- Passivated 316 stainless steel sheath temperatures to 1200°F (650°C)
- · 304 stainless steel sheath temperatures to 1200°F (650°C)
- Steel sheath temperatures to 750°F (400°C)
- · Copper sheath temperatures to 350°F (175°C)

Features and Benefits

- ANSI and ANSI compatible 2, 2½, 3, 4, 5, 6, 8, 10, 12 and 14 inch flanges provide appropriate heater size-to-application and fit.
- Flange sizes up to 24 inches available on made-to-order units.
- Element sheath and flange materials to meet application
- **Integral thermowells** provide convenient temperature sensor insertion and replacement without draining the fluid being heated.
- A standard, general purpose (NEMA 1) terminal enclosure offers easy access to wiring.
- Element support(s) provide proper element spacing to maximizing heater performance and life.

- To facilitate lifting, drilled and tapped holes come supplied for eye bolts on 10 inch and larger flange heaters.
- All units are inspected and/or tested to ensure element-toflange pressure seals do not leak.
- Four or six inch FIREBAR flange heaters pack more kilowatts in smaller bundles—in liquid immersion applications, a conventional 10 inch round tubular element flange can be replaced with a six inch FIREBAR flange.
- **WATROD** hairpins are repressed (recompacted) to maintain MgO density, dielectric strength, heat transfer and life.
- Branch circuits meet NEC with 48 amps per circuit maximum.
- **UL®** and **CSA** component recognition under file numbers E52951 and 31388 respectively. See pages 268-271 for details.

Flange Immersion Heaters

Applications

- Water:
 - Deionized
 - Demineralized
 - Clean
 - Potable
 - **Process**

- Industrial water rinse tanks
- Vapor degreasers
- · Hydraulic oil, crude, asphalt
- Lubricating oils at API specified watt densities
- Air and gas flow
- · Caustic solutions

- Chemical baths
- Process air equipment
- · Boiler equipment
- Freeze protection of any fluid
- · Anti-freeze (glycol) solutions
- Paraffin

Options

Terminal Enclosures

General purpose terminal enclosures, without thermostats, are standard on all flange immersion heaters. Optional terminal enclosures include:

- General purpose (NEMA 1) with a single or double pole thermostat.
- Moisture resistant (NEMA 4– steel). Available with or without a single or double pole thermostat.
- Corrosion resistant (NEMA 4X).
 Available with or without a single or double pole thermostat.
- Explosion resistant (NEMA 7) class 1 groups C and D. Available with or without a single or double pole thermostat.

- Explosion/moisture resistant (NEMA 7/4) combinations.
 Available with or without a single or double pole thermostat.
- For class 1, group B enclosures, consult your Watlow representative.

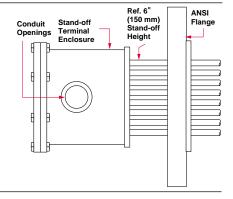
Enclosure Enhancements

- Enclosure heater to solve condensation and freeze problems.
- Power distribution blocks to facilitate power feed line wiring.

Prior to ordering, refer to the terminal enclosure dimensions on page 341. Order by adding the appropriate suffix letter(s) to the base flange heater code number, as

shown on the Build-a-Code chart. Heater code numbers and suffix letters are depicted on the *Stock* and *Options* charts, **pages 345 to 362**. Specify class and group, if applicable.

Caution


Explosion-resistant terminal enclosures are intended to provide explosion containment in the electrical termination/wiring enclosure only. No portion of the assembly outside of this enclosure is covered under this NEMA rating. NEMA rating effectiveness may be compromised by abuse or misapplication.

Stand-off Terminal Enclosures

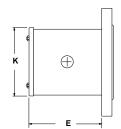
Stand-off terminal enclosures provide an air-insulating barrier between the flange and terminal enclosure by mounting the terminations and wiring away from the flange. Stand-off terminal enclosures are recommended

whenever a process operating temperature exceeds 400°F (205°C). This helps minimize terminal enclosure temperatures.

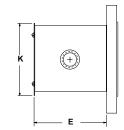
To order, specify **stand-off terminal enclosure**.

CSA Certified Enclosures

CSA certified moisture and/or explosion resistant terminal enclosures protect wiring in hazardous gas environments. These terminal enclosures, covered under CSA file number 61707, are

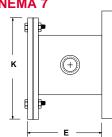

available on all WATROD and FIREBAR flange heaters. For additional information, consult your Watlow representative.

To order, specify **CSA certified enclosure**, **process temperature**


(°F), maximum working pressure of application (psig), media being heated and heater mounting orientation (horizontal or vertical) and flange size.

Flange Immersion Heaters Options

4-8 inches NEMA 1 and NEMA 4


10-14 inches NEMA 1

10-14 inches NEMA 4

4-14 inches NEMA 7

Terminal Enclosure Dimensions

			Without T	hermosta	it				With The	rmostat			
Enclosure	Flange						Single	e Pole			Doubl	e Pole	
Туре	Size inch	E Dim	ension (mm)	K Dim inch	ension (mm)	E Dim inch	ension (mm)	K Dim	ension (mm)	E Dim inch	ension (mm)	K Dim inch	ension (mm)
General	2①	1 ½	(38)	3 ¾	(86)	_	_	_	_	_	_	_	_
Purpose	2½①	2 1/4	(54)	4	(102)	_	_	_	_	_	_	_	_
(NEMA 1)	3	3 13/16	(97)	4 %	(117)	9 ¾	(238)	7	(178)	9 %	(238)	7	(178)
	4	9 %	(238)	7	(178)	9 %	(238)	7	(178)	9 ¾	(238)	7	(178)
	5	7 1/16	(179)	7	(178)	7 1/16	(179)	7	(178)	7 1/16	(179)	7	(178)
	6	7 1/16	(179)	8	(203)	7 1/16	(179)	8	(203)	7 1/16	(179)	8	(203)
	8	7 1/16	(179)	10 1/32	(255)	7 1/1.6	(179)	10 1/32	(255)	7 1/16	(179)	10 1/32	(255)
	10	7 1/16	(179)	11 %	(295)	7 1/1.6	(179)	11 %	(295)	7 1/16	(179)	11 %	(295)
	12	7 1/16	(179)	13 ½	(343)	7 1/1.6	(179)	13 ½	(343)	7 1/16	(179)	13 ½	(343)
	14	7 1/1.6	(179)	15 %	(384)	7 1/1.6	(179)	15 ¼	(384)	7 1/16	(179)	15 1/4	(384)
Moisture	2	2 %	(67)	3 ½	(89)	_	_	_	_	_	_	_	_
Resistant	2 ½	2 %	(67)	3 ½	(89)	_	_	_	_	_	_	_	_
(NEMA 4)	3	2 1/4	(54)	4	(102)	9 %	(238)	7	(178)	9 ¾	(238)	7	(178)
	4	9 ¾	(238)	7	(178)	9 ¾	(238)	7	(178)	9 %	(238)	7	(178)
	5	7 1/1.6	(179)	7	(178)	7 1/1.6	(179)	7	(178)	7 1/16	(179)	7	(178)
	6	7 1/1.6	(179)	8	(203)	7 1/1.6	(179)	8	(203)	7 1/16	(179)	8	(203)
	8	7 1/1.6	(179)	10 1/32	(255)	7 1/1.6	(179)	10 1/32	(255)	7 1/16	(179)	10 1/32	(255)
	10	7 3/4	(197)	13 ¾	(349)	7 ¾	(197)	13 ¾	(349)	7 3/4	(197)	13 ¾	(349)
	12	7 3/4	(197)	15 %	(403)	7 ¾	(197)	15 ¾	(403)	7 3/4	(197)	15 %	(403)
	14	7 3/4	(197)	17 ¼	(438)	7 3/4	(197)	17 ¼	(438)	7 3/4	(197)	17 ¼	(438)
Explosion	2	3 1/16	(78)	3 ¾	(95)	_	_	_	_	_	_	_	_
Resistant	2 ½	3 1/46	(78)	3 ¾	(95)	_	_	_	_	_	_	_	_
(NEMA 7)	3	7 1/4	(181)	5 ¾	(146)	7 1/8	(181)	5 ¾	(146)	7 ⅓	(181)	5 ¾	(146)
Class 1,	4	7 1/8	(181)	5 ¾	(146)	7 ⅓	(181)	5 ¾	(146)	7 1/8	(181)	5 ¾	(146)
Groups	5	7 %	(200)	8 %	(225)	7 %	(200)	8 %	(225)	7 %	(200)	8 %	(225)
C and D	6	7 %	(200)	9 %	(251)	7 %	(200)	9 %	(251)	7 %	(200)	9 %	(251)
Consult	8	7 %	(200)	12 1/8	(308)	7 %	(200)	12 1/4	(308)	7 %	(200)	12 1/4	(308)
Factory	10	7 %	(200)	14 %	(371)	7 %	(200)	14 %	(371)	7 %	(200)	14 %	(371)
for	12	7 %	(200)	15 %	(403)	7 %	(200)	15 %	(403)	7 ⅓	(200)	15 %	(403)
Group B)	14	7 %	(200)	19 ¾	(492)	7 %	(200)	19 ¾	(492)	7 ⅓	(200)	19 ¾	(492)

① Terminal enclosure is octagonal, not round.

Flange Immersion Heaters Options

Thermostats

To provide process temperature control, Watlow offers optional single pole, single throw (SPST) and double pole, single throw (DPST) thermostats.

Unless otherwise specified,

thermostats are mounted inside the terminal enclosure. For details and ordering information, refer to *Thermostats* on pages 423 to 425. Please verify that the thermostat's sensing bulb O.D. is compatible with the flange heater's thermowell I.D.

Thermocouples

ASTM Type J or K thermocouples offer more accurate sensing of process and/or sheath temperatures. A thermocouple may be inserted into the thermowell or attached to the heater's sheath.

Thermocouples are supplied with 120 inch (3050 mm) leads (longer lead lengths available). Unless otherwise specified, thermocouples are supplied with temperature ranges detailed on the *Thermocouple Types* chart.

Using a thermocouple requires an appropriate temperature and power control. These must be purchased separately. Watlow offers a wide variety of temperature and power controls to meet virtually all applications. Temperature controls can be configured to accept process variable inputs, too.

Wattages and Voltages

Watlow routinely supplies flange immersion heaters with 240 to 480V~(ac) as well as wattages from 150 watts to one megawatt. If

Consult your Watlow representative for details.

To order, specify **Type J** or **K** thermocouple and lead length. Indicate if the thermocouple is for **process temperature sensing** or heater sheath **high-limit protection**. Please specify if the flange heater will be mounted **vertical** or **horizontal** in the tank. **If vertical, specify if the housing is on top or bottom**.

If the flange heater is part of an in-line circulation heating application, indicate flow direction relative to the heater's enclosure.

RTDs

If your process requires greater temperature sensing accuracy than is possible with thermocouples, Watlow can also supply RTDs in DIN or JIS calibrations. Consult Watlow for details.

Thermocouple Types

ASTM Type	Conductor Positive	Characteristics Negative	Recomn Temperati °F	nended ^① ure Range (°C)
J	Iron	Constantan	0 to 1000	(-20 to 540)
	(Magnetic)	(Non-magnetic)		
K	Chromel®	Alumel®	0 to 2000	(-20 to 1100)
	(Non-magnetic)	(Magnetic)		

[®] Type J and Type K thermocouples are rated 32 to 1382°F and 32 to 2282°F (0-750°C and 0-1250°C), respectively. Watlow does not recommend exceeding temperature ranges shown on this chart for the tubular product line.

required, Watlow will make heaters with voltage up to 600V~(ac) and wattage beyond one megawatt. For more information on special voltage

and wattage configurations, consult your Watlow representative.

Branch Circuits

Branch circuits are subdivided by National Electrical Code (NEC) requirements to a maximum of

48 amps per circuit. Consult factory for circuit requirements other than those listed in the stock charts.

Alumel® and Chromel® are registered trademarks of the Hoskins Manufacturing Company.

Flange Immersion Heaters Options

Sheath Materials

The following sheath materials are available on WATROD and FIREBAR flange heaters:

Standard Sheath Materials

neam materiais
Incoloy®
316 stainless steel
Steel
Copper
Incoloy®

Made-to-Order Sheath Materials

Made to 0	der Officatif Materials
WATROD	304 stainless steel Monel®
	Wiorici
FIREBAR	304 stainless steel

Exotic Sheath Materials

Consult your Watlow representative for details and availability.

External Finishing

Passivation

During the manufacturing process, particles of iron or tool steel may become embedded in the stainless steel or alloy sheath. If not removed, these particles may

corrode, produce rust spots and/or contaminate the process. For critical sheath applications, passivation will remove free iron from the sheath. To order, specify passivation.

Other Finishes

Simple belt polishing and glass beading are available to meet cosmetic demands. Consult factory for details.

Flanges

Flange Sizes and Styles

Standard: 2[®], 2½[®], 3, 4, 5, 6, 8, 10, 12 and 14 inch ANSI raised face/blind flanges.

Made-to-Order: 16, 18, 20 and 24 inch in any recognized configuration, as well as customer specified. Over 24 inch, consult Watlow Process Systems.

Flange Materials

Standard	Carbon steel
	316 stainless steel
	304 stainless steel
Made-to-Order	Exotic materials to
Made-to-Order	Exotic materials to meet specific
Made-to-Order	Existing materials to

Pressure Classes

Standard	150 lb
Made-to-Order	300 lb
	600 lb
	Over 600 lb [©]

Gaskets

Rubber, asbestos-free and spiral wound gaskets are available for all flange sizes. Order by specifying gasket type, flange size/rating, process operating temperature and pressure.

To make the correct selection, see the *Gasket Selection* chart.

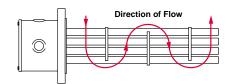
It provides a recommended gasket type and effective temperature rating.

To use this chart, multiply operating temperature by the operating pressure to arrive at "Maximum PSIG X °F." This is listed in the chart's first column.

Gasket Selection

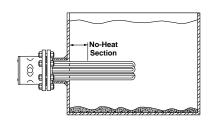
Maximum PSIG X °F	Gasket Temperature °F	Gasket Type
Up to 15,000	300	Rubber
Over 250,000	700	Asbestos-Free
Over 250,000	3	Spiral Wound

3 Depends on metal gasket material.


Baffles

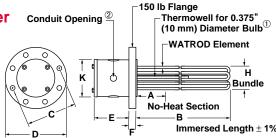
For forced circulation applications, baffles can be arranged on the heating element bundle to enhance and/or modify fluid or gas flow for better heat transfer.

- ① ANSI compatible only.
- ② Consult Watlow Process Systems in Troy, Missouri.


For open tank or convection heating applications, standard element supports will be supplied.

To order, specify **baffles**.

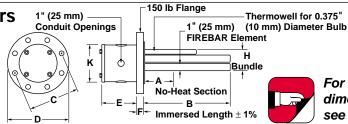
Flange Immersion Heaters Application Hints

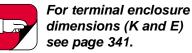

- Select the recommended heating element sheath material and watt density for the substance being heated. Use the *Supplemental Applications Chart* on pages 263 to 266. If unable to determine the correct heating element sheath material and type, consult your Watlow representative.
- Extend the element no-heat section completely into the fluid being heated to help prevent premature heater failure. See accompanying illustration for proper no-heat section placement.
- Locate flange heater low in the tank, but above the sludge level.

- Choose a FIREBAR element when your application requires a smaller system package or lower watt density.
- Ensure wiring integrity by keeping terminal enclosure temperature below 400°F (205°C).
- Keep electrical connections clean, dry and tight.
- Minimize problems associated with low liquid level conditions by

- using low liquid level sensor or sheath temperature high-limit control.
- Periodically remove the flange assembly to inspect and clean the heating element(s). This preventive maintenance will reduce premature failure and optimize heater performance.
- Refer to the Installation and Maintenance Instructions for correct orientation of FIREBAR elements. This is important in air applications with customer supplied circulation tanks. Correct element orientation to flow minimizes pressure drop, increases buoyancy force and heater performance.

For terminal enclosure dimensions (K and E) see page 341.


Flange Immersion Heater Dimensions


Element	Flange		Flange Inting		Ther	mowell											Num	ber of
Type	Size in	Siz in	e (mm)	Number	Le in	ength (mm)	A Dim	ension (mm)	C Dim in	ension (mm)	D Dime	ension (mm)	F Dim in	ension (mm)	H Dim	ension (mm)	Elen Std	nents Max
WATROD	2①	3/4	(19)	4	—	_	2	(51)	4 3/4	(121)	6	(152)	% ₆	(14)	2	(51)	3	3
WATROD	21/210	3/4	(19)	4	—	_	3	(76)	5 ½	(140)	7	(178)	¾	(10)	2 1/4	(57)	3	3
WATROD	3	3/4	(19)	4	12	(305)	4	(102)	6	(152)	7 ½	(191)	¹⁵ / ₁₆	(24)	2 3/4	(70)	3	6
WATROD	4	3/4	(19)	8	12	(305)	4	(102)	7 ½	(191)	9	(229)	¹⁵ / ₁₆	(24)	3 %	(98)	6	6
WATROD	5	7∕8	(22)	8	12	(305)	4	(102)	8 ½	(216)	10	(254)	¹⁵ / ₁₆	(24)	5	(127)	6	9
WATROD	6	7∕8	(22)	8	12	(305)	4	(102)	9 1/2	(241)	11	(279)	1	(25)	6	(152)	12	15
WATROD	8	7/8	(22)	8	18	(457)	6	(152)	11 ¾	(298)	13 ½	(343)	1 1//8	(29)	713/16	(198)	18	24
WATROD	10	1	(25)	12	18	(457)	6	(152)	14 1/4	(362)	16	(406)	1¾6	(30)	9¾	(248)	27	36
WATROD	12	1	(25)	12	18	(457)	6	(152)	17	(432)	19	(483)	1 1/4	(32)	11 ¾	(298)	36	54
WATROD	14	1 1/4	(29)	12	18	(457)	6	(152)	18¾	(476)	21	(533)	1 ¾	(35)	12¾	(324)	45	72

① Thermowells are not provided on two and 2½ inch units. 150 lb rating is not available on two and 2½ inch stock units.

Note: The number and size of conduit openings will comply with the National Electrical Code standards.

Flange Immersion Heaters

Flange Immersion Heater Dimensions

Element	Flange		nge ng Hole	Therr	nowell										
Type	Size in	Size in (mm)	Number		ngth (mm)										Elements Standard
FIREBAR	4	³¼ (19)	8	12	(305)	4	(102)	7½	(191)	9	(229)	¹⁵ /16	(24)	3% (98)	6
FIREBAR	6	½ (22)	8	12	(305)	4	(102)	9½	(241)	11	(279)	1	(25)	6 (152)	15

WATROD		Immersed		Co	de No.		Est. Ship
Description	kW	B Dimension inch (mm)	240V~(ac) 1-Phase	240V~(ac) 3-Phase	480V~(ac) 1-Phase	480V~(ac) 3-Phase	Weight Ibs (kg
Application	s: Pr	ocess Wa	ter, Ethylene	Glycol (50%	6)		
45 W/in² Steel Flange 3-Copper (7 W/cm²)	4.5 9	16 (406) 29 (737)	FKC16A102 FKC29A102	FKC16A32 FKC29A3	FKC16A11@ FKC29A11@	FKC16A5 FKC29A5	22 (10 27 (13
Application	: Pro	cess Wate	er				
45 W/in² Steel Flange 3-Incoloy® (7 W/cm²)	9	28 (711)	FKN28A102	FKN28A3②	FKN28A11@	FKN28A5	27 (13
Application	s: Co	oking Oil	s, Ethylene (Glycol (100%	b)	•	•
30 W/in² Steel Flange 3-Steel (4.7 W/cm²)	6	29 (737)	FKS29A102	FKS29A3②	FKS29A112	FKS29A5	27 (13
Application	s: Me	edium Wei	ight Oils, He	at Transfer C	ils, Liquid Pa	raffin	
15 W/in ² ^③ Steel Flange 3-Incoloy [®]	3	28 (711)		FKN28A12@		FKN28A132	27 (13

15 W/in ² ^③	3	28 (711)	FKN28A12②	FKN28A13®	27 (13)
Steel Flange					
3-Incoloy®					
(2.3 W/cm ²)					

Applications: Medium Weight Oils, Heat Transfer Oils, Lube Oils, Liquid Paraffin

10 W/in ² ^③	2	29 (737)	FKS29A122	FKS29A13@	27 (13)
Steel Flange					
3-Steel					
(1.6 W/cm ²)					

All flange immersion heaters are Assembly

Stock unless otherwise noted.

② Standard

3 Must be operated 3-phase wye

Availability

Stock: Same day shipment

Assembly Stock: Five to seven working days Standard: 10 working days, depending on

size

Flange Immersion Heaters

7" O.D. Plate Flange— WATROD Element

	inch an a	nension (mm) and P	240V~(ac) 1-Phase otable Water	No. of Circuits	240V~(ac)	No. of	480V~(ac)	No. of	480V~(ac)	No. of	Weight
		and P	otable Water		3-Phase	Circuits	1-Phase	Circuits	3-Phase	Circuits	lbs (kg)
12	10		Clabic Water	•							
	18	(457)	FLN18A102	2	FLN18A32	1	FLN18A11②	1	FLN18A5	1	22 (10)
: Cle	an a	and P	otable Water	•		'					
		, ,		1 2	FLN17N3 FLN30A3	1 1	FLN17N112 FLN30A112	1 1	FLN17N52 FLN30A52	1	22 (10) 27 (13)
Proc	ess	Wate	r								
4.5	12½	(318)	FLN12J10②	1	FLN12J3	1	FLN12J11@	1	FLN12J5②	1	21 (10)
: Co	okin	g Oil	s, Ethylene (Glycol ((100%)						
4	18	(451) (457) (762)			FLN17N122 FLN18A122 FLN30A12	1 1 1			FLN17N132 FLN18A13 FLN30A13	1 1 1	22 (10) 22 (10) 27 (13)
	9 18 Proc 4.5	9 17¾ 18 30 Process 4.5 12½ : Cookin 3 17¾ 4 18	9 17% (451) 18 30 (762) Process Water 4.5 12% (318) 3 17% (451) 4 18 (457)	9 17½ (451) FLN17N10② 18 30 (762) FLN30A10② Process Water 4.5 12½ (318) FLN12J10② 3 17¾ (451) 4 18 (457)	18 30 (762) FLN30A10② 2 Process Water 4.5 12½ (318) FLN12J10② 1 2 Cooking Oils, Ethylene Glycol (3 17¼ (451) 4 18 (457)	9 17% (451) FLN17N10® 1 FLN17N3 18 30 (762) FLN30A10® 2 FLN30A3 Process Water 4.5 12½ (318) FLN12J10® 1 FLN12J3 CCooking Oils, Ethylene Glycol (100%) 3 17% (451) FLN17N12® FLN18A12®	9 17 ½ (451) FLN17N10② 1 FLN17N3 1 18 30 (762) FLN30A10② 2 FLN30A3 1 Process Water 4.5 12 ½ (318) FLN12J10② 1 FLN12J3 1 E Cooking Oils, Ethylene Glycol (100%) 3 17 ½ (451) FLN17N12② 1 4 18 (457) FLN18A12② 1	9 17% (451) FLN17N10② 1 FLN17N3 1 FLN17N11② 18 30 (762) FLN30A10② 2 FLN30A3 1 FLN30A11② Process Water 4.5 12½ (318) FLN12J10② 1 FLN12J3 1 FLN12J11② E Cooking Oils, Ethylene Glycol (100%) 3 17% (451) FLN17N12② 1 FLN18A12② 1 4 18 (457) FLN18A12② 1 FLN18A12② 1	9 17% (451) FLN17N10@ 1 FLN17N3 1 FLN17N11@ 1 18 30 (762) FLN30A10@ 2 FLN30A3 1 FLN30A11@ 1 Process Water 4.5 12% (318) FLN12J10@ 1 FLN12J3 1 FLN12J11@ 1 E Cooking Oils, Ethylene Glycol (100%) 3 17% (451) FLN17N12@ 1 4 18 (457) FLN18A12@ 1	9 17% (451) FLN17N10② 1 FLN17N3 1 FLN30A11② 1 FLN30A5② Process Water 4.5 12% (318) FLN12J10② 1 FLN12J3 1 FLN12J11② 1 FLN12J5② Cooking Oils, Ethylene Glycol (100%) 3 17% (451) 4 18 (457) FLN18A12② 1 FLN18A13	9 17% (451) FLN17N10@ 1 FLN17N3 1 FLN17N11@ 1 FLN30A5@ 1 18 30 (762) FLN30A10@ 2 FLN30A3 1 FLN30A11@ 1 FLN30A5@ 1 Process Water 4.5 12% (318) FLN12J10@ 1 FLN12J3 1 FLN12J11@ 1 FLN12J5@ 1 E Cooking Oils, Ethylene Glycol (100%) 3 17% (451) 4 18 (457) FLN18A12@ 1 FLN18A13 1 FLN17N13@ 1 FLN17N13@ 1 FLN18A13 1 FLN18A

All flange immersion heaters are Assembly Stock unless otherwise noted.

Availability

Stock: Same day shipment

Assembly Stock: Five to seven working days **Standard**: 10 working days, depending on

size

② Standard

3 Must be operated 3-phase wye

Flange Immersion Heaters

3" 150 lb ANSI Flange—WATROD Element

WATROD		lmn	nersed				Co	de No.				Est. S	Ship.
Description	kW		nension (mm)	240V~(ac) 1-Phase	No. of Circuits	240V~(ac) 3-Phase	No. of Circuits	480V~(ac) 1-Phase	No. of Circuits	480V∼(ac) 3-Phase	No. of Circuits	Wei Ibs	ght (kg
pplication:	Clear	Wat	er										
60 W/in²	6	151/2	(394)	FMC715J10	1	FMC715J3	1	FMC715J11	1	FMC715J5	1	22	(10
Steel Flange	9	21½	(546)	FMC721J10	1	FMC721J3	1	FMC721J11	1	FMC721J5	1	25	(1:
3-Copper	12	27	(686)			FMC727A3	1	FMC727A11	1	FMC727A5	1	27	(1
(9.3 W/cm ²)	15	32½	(826)			FMC732J3	1	FMC732J11	1	FMC732J5	1	28	(1
	18	38	(965)			FMC738A3	1	FMC738A11	1	FMC738A5	1	30	(1
	25	51	(1295)					FMC751A11	1	FMC751A5	1	34	(1
	30	60½	(1537)					FMC760J11@	1	FMC760J52	1	36	(1
Application:	Proce	ess V	/ater				'				•		
48 W/in² 5 6	4.5	13½	(343)	FMN713J10	1	FMN713J3	1	FMN713J11	1	FMN713J5	1	22	(1
Steel Flange	6	18	(457)	FMN718A10	1	FMN718A3	1	FMN718A11	1	FMN718A5	1	23	(1
3-Incoloy®	7.5	20½	(521)	FMN720J10	1	FMN720J3	1	FMN720J11	1	FMN720J5	1	25	(1
(7.5 W/cm ²)	9	25½	(648)	FMN725J10	1	FMN725J3	1	FMN725J11	1	FMN725J5	1	27	(1
	12	33	(838)			FMN733A3	1	FMN733A11	1	FMN733A5	1	28	(1
	15	40½	(1029)			FMN740J3	1	FMN740J11	1	FMN740J5	1	30	(1
	18	48	(1219)			FMN748A3	1	FMN748A11	1	FMN748A5	1	32	(1
Applications	: Ford	ed A	ir and	Gases, Caus	tic Solu	itions, Degrea	sing So	lutions					
23 W/in ² 5 6	3	18	(457)	FMNA18A10	1	FMNA18A3	1	FMNA18A11	1	FMNA18A5	1	23	(1
Steel Flange	4.5	25½	(648)	FMNA25J10	1	FMNA25J3	1	FMNA25J11	1	FMNA25J5	1	27	(1
3-Incoloy®	6	33	(838)	FMNA33A10	1	FMNA33A3	1	FMNA33A11	1	FMNA33A5	1	28	(1
(3.6 W/cm ²)	7.5	40½	(1029)	FMNA40J10	1	FMNA40J3	1	FMNA40J11	1	FMNA40J5	1	30	(1
	9	48	(1219)	FMNA48A10	1	FMNA48A3	1	FMNA48A11	1	FMNA48A5	1	32	(1
			(1638)			FMNA64J3	1	FMNA64J11	1	FMNA64J5	1	37	(1
	12.5	64 ½								FMNA77A5	1	42	(1
	12.5 15	64½ 77	(1956)			FMNA77A3	1	FMNA77A11	1	FININALLAS			
Applications	15	77	(1956)	s, Degreasin	g Soluti	FMNA77A3 ons, Heat Tra			1	FWINA//A5	1		
	15	77	(1956) ght Oi l	s, Degreasin	g Soluti				1	FMS718A5	1		(1
23 W/in²	15 S: Ligh	77 twei	(1956)		1	ons, Heat Tra	nsfer Oi	s			1	23	
23 W/in² Steel Flange	15 5: Ligh 3	77 twei 18	(1956) ght Oil (457)	FMS718A10	1	ons, Heat Tra	nsfer Oil	S FMS718A11	1	FMS718A5	1	23	(1
23 W/in² Steel Flange 3-Steel	15 E: Ligh 3 4.5	77 twei 18 25½	(1956) ght Oil (457) (648)	FMS718A10 FMS725J10	1 1	ons, Heat Tra FMS718A3 FMS725J3	nsfer Oil	S FMS718A11 FMS725J11	1 1	FMS718A5 FMS725J5	1 1	23 27	(1
23 W/in² Steel Flange 3-Steel	3 4.5 6	77 18 25½ 33	(1956) ght Oil (457) (648) (838) (1029)	FMS718A10 FMS725J10 FMS733A10	1 1 1	ons, Heat Tra FMS718A3 FMS725J3 FMS733A3	nsfer Oil	S FMS718A11 FMS725J11 FMS733A11	1 1 1	FMS718A5 FMS725J5 FMS733A5	1 1 1	23 27 28	(1 (1 (1
Applications 23 W/in² Steel Flange 3-Steel (3.6 W/cm²)	3 4.5 6 7.5	77 18 25½ 33 40½	(1956) ght Oil (457) (648) (838)	FMS718A10 FMS725J10 FMS733A10 FMS740J10	1 1 1 1	ons, Heat Tra FMS718A3 FMS725J3 FMS733A3 FMS740J3	1 1 1 1	S FMS718A11 FMS725J11 FMS733A11 FMS740J11	1 1 1	FMS718A5 FMS725J5 FMS733A5 FMS740J5	1 1 1	23 27 28 30	(1 (1 (1 (1 (1

All flange immersion heaters are Assembly Stock unless otherwise noted.

Availability

Stock: Same day shipment

Assembly Stock: Five to seven working days **Standard**: 10 working days, depending on

size

- ② Standard
- § 240V~(ac) 3-phase can be rewired wye to produce ½ more kW and watt density when operated at 480V~(ac) 3-phase.
- © Can be rewired wye to produce ½ of the original kW and watt density (3-phase only).

Flange Immersion Heaters

3" 150 lb ANSI Flange—WATROD Element

WATROD		Immersed				Cod	le No.				Est.	Ship.
Description	kW	B Dimension	240V~(ac)	No. of	240V~(ac)	No. of	480V~(ac)	No. of	480V~(ac)	No. of		ight
		inch (mm)	1-Phase	Circuits	3-Phase	Circuits	1-Phase	Circuits	3-Phase	Circuits	lbs	(kg)
Applications	: Med	ium Weight	Oils, Heat Tr	ansfer O	ils, Liquid Pa	raffin						
16 W/in ² ③	1.5	13½ (343)			FMN713J12	1			FMN713J13	1	22	(10)
Steel Flange	2	18 (457)			FMN718A12	1			FMN718A13	1	23	(11)
3-Incoloy®	2.5	20½ (521)			FMN720J12	1			FMN720J13	1	25	(12)
(2.5 W/cm ²)	3	25½ (648)			FMN725J12	1			FMN725J13	1	27	(13)
	4	33 (838)			FMN733A12	1			FMN733A13	1	30	(14)
	5	40½ (1029)			FMN740J12	1			FMN740J13	1	30	(14)
	6	48 (1219)			FMN748A12	1			FMN748A13	1	33	(15)
Applications	: Bun	ker C and #	6 Fuel Oils							•		
8 W/in²③	2	33 (838)			FMS733A12	1			FMS733A13	1	28	(13)
Steel Flange	3	48 (1219)			FMS748A12	1			FMS748A13	1	32	(15)
3-Steel	4	64½ (1638)			FMS764J12	1			FMS764J13	1	37	(17)
(1.3 W/cm ²)	5	77 (1956)			FMS777A12	1			FMS777A13	1	42	(19)

4" 150 Lb ANSI Flange—WATROD Element

WATROD		Immersed				Co	ode No.				Est. S	Ship.
Description	kW	B Dimension inch (mm)	240V~(ac) 1-Phase	No. of Circuits	240V~(ac) 3-Phase	No. of Circuits	480V~(ac) 1-Phase	No. of Circuits	480V~(ac) 3-Phase	No. of Circuits	Wei Ibs	ght (kg)
Application:	Clean	Water							-			
60 W/in ²	12	15½ (394)	FOC715J10	2	FOC715J3	1	FOC715J11	1	FOC715J5	1	31	(14)
Steel Flange	18	21½ (546)	FOC721J10	2	FOC721J3	1	FOC721J11	1	FOC721J5	1	34	(16)
6-Copper	24	27 (686)	FOC727A10	2	FOC727A3	2	FOC727A11	1	FOC727A5	1	36	(17)
(9.3 W/cm ²)	30	32½ (826)			FOC732J3	2	FOC732J11	2	FOC732J5	1	39	(18)
	36	38 (965)			FOC738A3	2	FOC738A11	2	FOC738A5	1	43	(20)
	50	51 (1295)							FOC751A5	2	48	(22)
	60	60½ (1537)							FOC760J52	2	52	(24)
Application:	Deior	nized Wate	r, Demineraliz	ed Wate	r	•	•	•		•		
60 W/in ²	12	16 (406)	FOR716A10	1	FOR716A3	1	FOR716A11	1	FOR716A5	1	31	(14)
316 SS Flange	18	22 (559)	FOR722A10	2	FOR722A3	1	FOR722A11	1	FOR722A5	1	34	(16)
6-316 SS	24	27½ (699)	FOR727J10	2	FOR727J3	2	FOR727J11	1	FOR727J5	1	36	(17)
(9.3 W/cm ²)	30	33 (838)			FOR733A3	2	FOR733A11	2	FOR733A5	1	39	(18)
Passivated	36	38½ (978)			FOR738J3	2	FOR738J11	2	FOR738J5	1	43	(20)
	50	51½ (1308)							FOR751J5	2	53	(25)
	60	61 (1549)							FOR761A5	2	56	(26)
			·	·		·			,	С	ONTI	NUEL

All flange immersion heaters are Assembly

Stock unless otherwise noted.

Availability

Stock: Same day shipment

Assembly Stock: Five to seven working days **Standard**: 10 working days, depending on

size

② Standard

3 Must be operated 3-phase wye

Flange Immersion Heaters 4" 150 lb ANSI Flange—WATROD Element

WATROD		Immersed				Co	de No.				Est. Ship.
Description	kW	B Dimension	240V~(ac)	No. of	240V~(ac)	No. of	480V~(ac)	No. of	480V~(ac)	No. of	Weight
		inch (mm)	1-Phase	Circuits	3-Phase	Circuits	1-Phase	Circuits	3-Phase	Circuits	lbs (kg)
Application:	Proce	ess Water									
48 W/in²⑤	9	13½ (343)	FON713J10	1	FON713J3	1	FON713J11	1	FON713J5	1	29 (14)
Steel Flange	12	18 (457)	FON718A10	2	FON718A3	1	FON718A11	1	FON718A5	1	32 (15)
6-Incoloy®	15	20½ (521)	FON720J10	2	FON720J3	1	FON720J11	1	FON720J5	1	34 (16
(7.5 W/cm²)	18	25½ (648)	FON725J10	2	FON725J3	1	FON725J11	1	FON725J5	1	36 (17
	24	33 (838)	FON733A10	2	FON733A3	2	FON733A11	1	FON733A5	1	39 (18
	30	40½ (1029)		_	FON740J3	2	FON740J11	2	FON740J5	1	43 (20
	36	48 (1219)			FON748A3	2	FON748A11	2	FON748A5	1	48 (22
Applications		, ,	Gases. Caus	tic Solu	tions, Degrea				1 2111 13113		
23 W/in²⑤⑥	6	18 (457)	FONA18A10	1	FONA18A3	1	FONA18A11	1	FONA18A5	1	32 (15
Steel Flange	9	25½ (648)	FONA25J10	1	FONA25J3	1	FONA25J11	1	FONA25J5	1	36 (17
6-Incoloy®	12	33 (838)	FONA33A10	2	FONA33A3	1	FONA33A11	1	FONA33A5	1	39 (18
(3.6 W/cm²)	15	40½ (1029)	FONA40J10	2	FONA40J3	1	FONA40J11	1	FONA40J5	1	43 (20
(0.0 11,0)	18	48 (1219)	FONA48A10	2	FONA48A3	1	FONA48A11	1	FONA48A5	1	,
	25	64½ (1638)	FUNA46A10	2	FONA64J3	2	FONA64J11	2	FONA64J5	1	1
	30	77 (1956)			FONA77A3	2	FONA77A11	2	FONA77A5	1	53 (24 61 (28
A mmliaatiama		, ,	la Daggasig	. Cal4:				2	FUNATTAS	ı	01 (20
					ons, Heat Tra				T		
23 W/in²	6	18 (457)	FOS718A10	1	FOS718A3	1	FOS718A11	1	FOS718A5	1	32 (15
Steel Flange	9	25½ (648)	FOS725J10	1	FOS725J3	1	FOS725J11	1	FOS725J5	1	36 (17
6-Steel	12	33 (838)	FOS733A10	2	FOS733A3	1	FOS733A11	1	FOS733A5	1	39 (18
(3.6 W/cm²)	15	40½ (1029)	FOS740J10	2	FOS740J3	1	FOS740J11	1	FOS740J5	1	43 (20
	18	48 (1219)	FOS748A10	2	FOS748A3	1	FOS748A11	1	FOS748A5	1	48 (22
	25	64½ (1638)			FOS764J3	2	FOS764J11	2	FOS764J5	1	53 (24
	30	77 (1956)			FOS777A3	2	FOS777A11	2	FOS777A5	1	61 (28
Applications	: Med	ium Weight	Oils, Heat Tr	ansfer (Oils, Liquid Pa	araffin					
16 W/in²③	3	13½ (343)			FON713J12	1			FON713J13	1	29 (14
Steel Flange	4	18 (457)			FON718A12	1			FON718A13	1	32 (15
6-Incoloy®	5	20½ (521)			FON720J12	1			FON720J13	1	34 (16
(2.5 W/cm ²)	6	25½ (648)			FON725J12	1			FON725J13	1	36 (17
	8	33 (838)			FON733A12	1			FON733A13	1	39 (18
	10	40½ (1029)			FON740J12	1			FON740J13	1	43 (20
	12	48 (1219)			FON748A12	1			FON748A13	1	48 (22
Applications	: Bun	ker C and #	#6 Fuel Oils	-	I			-	-		
8 W/in²③	5	40½ (1029)	-		FOS740J12	1			FOS740J13	1	43 (20
Steel Flange	6	48 (1219)			FOS748A12	1			FOS748A13	1	48 (22
6-Steel	8	64½ (1638)			FOS764J12	1			FOS764J13	1	53 (24
(1.3 W/cm ²)	10	77 (1956)			FOS777A12	1			FOS777A13	1	61 (28
(1.5 44/6111)	10	11 (1730)			1 00/// 1/12				IOSITIAIS	'	01 (20

All flange immersion heaters are Assembly Stock unless otherwise noted.

Availability

Stock: Same day shipment

Assembly Stock: Five to seven working days **Standard**: 10 working days, depending on

size

③ Must be operated 3-phase wye

§ 240V~(ac) 3-phase can be rewired wye to produce ½ more kW and watt density when operated at 480V~(ac) 3-phase. © Can be rewired wye to produce ¼ of the original kW and watt density (3-phase only).

Flange Immersion Heaters

4" 150 lb ANSI Flange—FIREBAR Element

Description Name	FIREBAR		Immersed		Cod	le No.		Est.	Ship.
Applications: Process Water, Ethylene Glycol (50%)	Description	kW	B Dimension	240V~(ac)	No. of	480V~(ac)	No. of	We	ight
A5 W/in² 12 13½ (340) FONF13G27 1			inch (mm)	3-Phase	Circuits	3-Phase	Circuits	lbs	(kg)
304 SS Flange 15	Applications:	Proc	ess Water,	Ethylene Gly	col (50%	6)			
Selncoloy	45 W/in²	12	13% (340)	FONF13G27	1			32	(20)
C W/cm² 24 22 (581) FONF22R27 2 FONF22R28 1 44 (20) (20	304 SS Flange	15	16 (406)	FONF16A27	1			35	(20)
30			, ,	FONF18G27	l			38	, ,
Section Sect	(7 W/cm ²)	24	22% (581)	FONF22R27	2	FONF22R28	1	41	(21)
A8			` '	_	1				٠,
Mathematical Registration			, ,	FONF32R27	2				, ,
Applications: Cooking Oils, Ethylene Glycol (100%) 30 W/in ² 3									
30 W/in ²	A 11 41		1 1		1 (4000		2	54	(25)
304 SS Flange		1							
17			` '		l				. ,
	_								, ,
25.5 35 (889) FONF35A12 2 FONF35A13 1 46 (21) 50 (23) (23) (25) (24) (25) (` '		l				. ,
A	(4.7 VV/CIII)		` ′						. ,
Applications: Heat Transfer Oils Mineral Oils Degreasing Solutions Solut			(/		l				٠,
Applications: Heat Transfer Oils, Mineral Oils, Degreasing Solutions			, ,	FUNF45J12	2				٠,
23 W/in²® 7.5 16½ (419) FONF16J20 1	Applications		` ′	ila Minaral O	ila Das			J4	(23)
304 SS Flange 10			T		_	reasing Soluti	ons		
12.8 24½ (622) FONF24J20 1 FONF24J19 1 41 (19) (3.6 W/cm²) 15.8 30 (762) FONF30A20 1 FONF30A19 1 44 (20)			` '						. ,
(3.6 W/cm²) 15.8 30 (762) FONF30A20 1 FONF30A19 1 44 (20) 19 35 (889) FONF35A20 1 FONF35A19 1 46 (21) 50 (23) 32.3 56 (1422) FONF56A20 2 FONF56A19 1 54 (25) (2	_		, ,		l	EONESA IAO	1		. ,
19 35 (889) 25 45½ (1156) 450% (123) 450			1 1						, ,
Second S	(3.0 W/CIII)		` '						
Applications: Medium Weight Oils, Heat Transfer Oils, Lube Oils, Liquid Paraffin			. `						. ,
Applications: Medium Weight Oils, Heat Transfer Oils, Lube Oils, Liquid Paraffin 15 W/in²® 4 13¾ (340) FONF13G29 1 32 (15) 304 SS Flange 6-Incoloy® 6 18½ (467) FONF16A29 1 35 (16) (2.3 W/cm²) 8 22½ (581) FONF2R29 1 FONF22R30 1 41 (19) 10 27½ (708) FONF27R29 1 FONF27R30 1 44 (20) 12 32½ (835) FONF32R29 1 FONF32R30 1 46 (21) 16 42½ (1076) FONF42G29 1 FONF42G30 1 50 (23) 4Applications: Bunker C and #6 Fuel Oils, Asphalt 8 W/in²® 3.25 1½ (419) FONF16J22 1 35 (16) 304 SS Flange (6-Incoloy® 3.25 1½ (622) FONF24J22 1 FONF24J21 1 41 (19) (1.3 W/cm²) 5.25 30 (762) FONF35A22 1 FONF35A21 1 46 (21) 6-Incoloy® 8.5 45½ (1156) FONF45J22 1 FONF45J21 1 <th></th> <td></td> <td>1 1</td> <th></th> <td></td> <th></th> <td></td> <td></td> <td>, ,</td>			1 1						, ,
15 W/in ²	Annlications:		, ,		nsfer (Liquid		• •
304 SS Flange 6						Jiis, Lube Oiis	, Liquiu		
Color Colo			` '		l				1 1
(2.3 W/cm²) 8 22½ (581) FONF22R29 1 FONF27R30 1 41 (19) 10 27½ (708) FONF27R29 1 FONF32R30 1 44 (20) 12 32½ (835) FONF32R29 1 FONF32R30 1 50 (23) 16 42½ (1076) FONF42G29 1 FONF42G30 1 50 (23) Applications: Bunker C and #6 Fuel Oils, Asphalt 8 W/in²® 3.25 19½ (419) FONF16J22 1 38 (17) 6-Incoloy® (1.3 W/cm²) 4.25 24½ (622) FONF30A22 1 FONF30A21 1 41 (19) 1.3 W/cm²) 8.5 45½ (1156) FONF35A22 1 FONF35A21 1 46 (21) 1.4 (19) 1.5 (_		1 1		l				, ,
12 32 ½ (835) FONF32R29 1 FONF32R30 1 46 (21)	· ·		` '			FONF22R30	1		
12 32 ½ (835) FONF32R29 1 FONF32R30 1 46 (21)		10	27% (708)	FONF27R29	1	FONF27R30	1	44	(20)
Applications: Bunker C and #6 Fuel Oils, Asphalt 8 W/in²® 3.25 16½ (419) FONF16J22 1 SONF24J22 1 SONF24J22 1 SONF30A21 1 SONF30A31		12	` ′	FONF32R29	1		1	46	. ,
Applications: Bunker C and #6 Fuel Oils, Asphalt 8 W/in²® 2.5 16½ (419) FONF16J22 fonF19J22 for FONF19J22 for FONF19J22 for FONF24J22 for FONF24J21 for FONF24J21 for FONF30A21 for FONF30A21 for FONF30A21 for FONF30A21 for FONF30A21 for FONF30A21 for FONF35A21 for FONF35A21 for FONF45J22 for FONF45J21 for FONF45J2		16	42% (1076)	FONF42G29	1	FONF42G30	1	50	(23)
8 W/in²® 2.5 16½ (419) FONF16J22 1 35 (16) 304 SS Flange 3.25 19½ (495) FONF19J22 1 38 (17) 6-Incoloy® 4.25 24½ (622) FONF24J22 1 FONF24J21 1 41 (19) (1.3 W/cm²) 5.25 30 (762) FONF30A22 1 FONF30A21 1 44 (20) 6.38 35 (889) FONF35A22 1 FONF35A21 1 46 (21) 8.5 45½ (1156) FONF45J22 1 FONF45J21 1 50 (23)		20	51% (1318)	FONF51R29	1	FONF51R30	1	54	(25)
304 SS Flange 6-Incoloy® (1.3 W/cm²) 3.25 19½ (495) FONF19J22 1 FONF24J21 1 41 (19) (1.3 W/cm²) 1 FONF30A21 1 44 (20)	Applications:	Bunk	er C and #	6 Fuel Oils, A	sphalt				
6-Incoloy® (1.3 W/cm²) 4.25 24½ (622) FONF24J22 1 FONF24J21 1 41 (19) (1.3 W/cm²) 5.25 30 (762) FONF30A22 1 FONF30A21 1 44 (20) (6.38 35 (889) 8.5 45½ (1156) FONF45J22 1 FONF45J21 1 50 (23)	8 W/in²③	2.5	16½ (419)	FONF16J22	1			35	(16)
(1.3 W/cm²) 5.25 30 (762) FONF30A22 1 FONF30A21 1 44 (20) 6.38 35 (889) FONF35A22 1 FONF35A21 1 46 (21) 8.5 45½ (1156) FONF45J22 1 FONF45J21 1 50 (23)		1			l			38	
6.38 35 (889) FONF35A22 1 FONF35A21 1 46 (21) 8.5 45½ (1156) FONF45J22 1 FONF45J21 1 50 (23)		1			1				
8.5 45½ (1156) FONF45J22 1 FONF45J21 1 50 (23)	(1.3 W/cm ²)		` ′		1		1	44	
			1 1		l				
10.75 56 (1422) FONF56A22 1 FONF56A21 1 54 (25)			, ,						
		10.75	56 (1422)	FUNF56A22	1	FONF56A21	1	54	(25)

All flange immersion heaters are Assembly Stock unless otherwise noted.

3 Must be operated 3-phase wye8 Can be rewired for 1-phase

Availability

Stock: Same day shipment

Assembly Stock: Five to seven working days **Standard**: 10 working days, depending on

size

Flange Immersion Heaters 5" 150 lb ANSI Flange—WATROD Element

WATROD		Immersed				Co	de No.				Est. S	Ship
Description	kW	B Dimension inch (mm)	240V~(ac) 1-Phase	No. of Circuits	240V~(ac) 3-Phase	No. of Circuits	480V∼(ac) 1-Phase	No. of Circuits	480V~(ac) 3-Phase	No. of Circuits	Wei Ibs	ight (kg
Application:	Clean	Water										
60 W/in ²	12	15½ (394)	FNC715J10	2	FNC715J3	1	FNC715J11	1	FNC715J5	1	35	(16
Steel Flange	18	21½ (546)	FNC721J10	2	FNC721J3	1	FNC721J11	1	FNC721J5	1	38	(18
6-Copper	24	27 (686)	FNC727A10	3	FNC727A3	2	FNC727A11	3	FNC727A5	1	40	(1
(9.3 W/cm ²)	30	32½ (826))		FNC732J3	2	FNC732J11	2	FNC732J5	1	43	(2
	36	38 (965))		FNC738A3	2	FNC738A11	2	FNC738A5	1	47	(2.
	50	51 (1295))						FNC751A5	2	52	(2
	60	60½ (1537))						FNC760J52	2	56	(2
60 W/in²	18	15½ (394)	FNC715J10X	3	FNC715J3X	1	FNC715J11X	1	FNC715J5X	1	38	(1
Steel Flange	27	21½ (546)		3	FNC721J3X	3	FNC721J11X	3	FNC721J5X	1	42	(1
9-Copper	36	27 (686)			FNC727A3X	3	FNC727A11X	3	FNC727A5X	1	45	(2
(9.3 W/cm ²)	45	32½ (826)			FNC732J3X	3	FNC732J11X	3	FNC732J5X	3	48	(2
•	54	38 (965))		FNC738A3X	3	FNC738A11X	3	FNC738A5X	3	53	(2
	75	51 (1295)				Ŭ			FNC751A5X	3	60	(2
	90	60½ (1537)							FNC760J5X2	3	66	(3
pplication:	Proce	` '			l		l					
48 W/in²⑤	9	13½ (343)	FNN713J10	1	FNN713J3	1	FNN713J11	1	FNN713J5	1	33	(1
Steel Flange	12	18 (457)	FNN718A10	2	FNN718A3	1	FNN718A11	1	FNN718A5	1	36	(1
6-Incoloy®	15	20½ (521)	FNN720J10	2	FNN720J3	1	FNN720J11	1	FNN720J5	1	38	(1
(7.5 W/cm ²)	18	25½ (648)	FNN725J10	2	FNN725J3	1	FNN725J11	1	FNN725J5	1	40	(1
	24	33 (838)	FNN733A10	3	FNN733A3	2	FNN733A11	3	FNN733A5	1	43	(2
	30	40½ (1029)			FNN740J3	2	FNN740J11	2	FNN740J5	1	47	(2
	36	48 (1219))		FNN748A3	2	FNN748A11	2	FNN748A5	1	52	(2
48 W/in²	14	13½ (343)	FNN713J10X	3	FNN713J3X	1	FNN713J11X	1	FNN713J5X	1	35	(1
Steel Flange	18	18 (457)		3	FNN718A3X	1	FNN718A11X	1	FNN718A5X	1	39	(1
9-Incoloy®	23	20½ (521)		3	FNN720J3X	3	FNN720J11X	1	FNN720J5X	1	42	(1
(7.5 W/cm ²)	27	25½ (648)		3	FNN725J3X	3	FNN725J11X	3	FNN725J5X	1	45	(2
,	36	33 (838)	1		FNN733A3X	3	FNN733A11X	3	FNN733A5X	1	48	(2
	45	40½ (1029)			FNN740J3X	3	FNN740J11X	3	FNN740J5X	3	53	(2
	54	48 (1219)			FNN748A3X	3	FNN748A11X	3	FNN748A5X	3	60	(2
pplications	: Ford	,	Gases, Caus	stic Solu		sina So						-
23 W/in²⑤⑥	6	18 (457)	· · · · · · · · · · · · · · · · · · ·	1	FNNA18A3	1	FNNA18A11	1	FNNA18A5	1	36	(1
Steel Flange	9	25½ (648)	·	1	FNNA25J3	1	FNNA25J11	1	FNNA25J5	1	40	(1
6-Incolov®	12	33 (838)		2	FNNA33A3	1	FNNA33A11	1	FNNA33A5	1	43	(2
(3.6 W/cm ²)	15	40½ (1029)		2	FNNA40J3	1	FNNA40J11	1	FNNA40J5	1	47	(2
	18	48 (1219)		2	FNNA48A3	1	FNNA48A11	1	FNNA48A5	1	52	(2
	18 25	64½ (1638)	·	2	FNNA64J3	2	FNNA64J11	2	FNNA64J5	1	52 57	(2
	30	77 (1956)			FNNA77A3	2	FNNA77A11	2	FNNA77A5	1	65	(28

All flange immersion heaters are Assembly Stock unless otherwise noted.

Availability

Stock: Same day shipment

Assembly Stock: Five to seven working days **Standard**: 10 working days, depending on size

- ② Standard
- ⑤ 240V~(ac) 3-phase can be rewired wye to produce ½ more kW and watt density when operated at 480V~(ac) 3-phase.
- © Can be rewired wye to produce ½ of the original kW and watt density (3-phase only).

Flange Immersion Heaters 5" 150 lb ANSI Flange—WATROD Element

WATROD		Immersed				Co	de No.				Est. Ship
Description	kW	B Dimension inch (mm)	240V~(ac) 1-Phase	No. of Circuits	240V~(ac) 3-Phase	No. of Circuits	480V∼(ac) 1-Phase	No. of Circuits	480V∼(ac) 3-Phase	No. of Circuits	Weight Ibs (ko
Application	s: For	ced Air an	d Gases, Cau	stic Sol	utions, Degrea	asing S	olutions				
23 W/in²	9	18 (457)	FNNA18A10X	1	FNNA18A3X	1	FNNA18A11X	1	FNNA18A5X	1	39 (1
Steel Flange	14	25½ (648)	FNNA25J10X	3	FNNA25J3X	1	FNNA25J11X	1	FNNA25J5X	1	45 (2
9-Incoloy®	18	33 (838)	FNNA33A10X	3	FNNA33A3X	1	FNNA33A11X	1	FNNA33A5X	1	48 (2
(3.6 W/cm²)	23	40½ (1029)	FNNA40J10X	3	FNNA40J3X	3	FNNA40J11X	1	FNNA40J5X	1	53 (2
	27	48 (1219)	FNNA48A10X	3	FNNA48A3X	3	FNNA48A11X	3	FNNA48A5X	1	60 (2
	38	64½ (1638)			FNNA64J3X	3	FNNA64J11X	3	FNNA64J5X	1	68 (3
	45	77 (1956)			FNNA77A3X	3	FNNA77A11X	3	FNNA77A5X	3	78 (3
pplications	: Ligh	tweight Oil	s, Degreasin	g Solutio	ons, Heat Tran	sfer Oil	s				
23 W/in²	6	18 (457)	FNS718A10	1	FNS718A3	1	FNS718A11	1	FNS718A5	1	36 (1
Steel Flange	9	25½ (648)	FNS725J10	1	FNS725J3	1	FNS725J11	1 1	FNS725J5	1	40 (1
6-Steel	12	33 (838)	FNS733A10	2	FNS733A3	1	FNS733A11	1	FNS733A5	1	43 (2
(3.6 W/cm ²)	15	40½ (1029)	FNS740J10	2	FNS740J3	1	FNS740J11	1	FNS740J5	1	47 (2
	18	48 (1219)	FNS748A10	2	FNS748A3	3	FNS748A11	1	FNS748A5①	1	52 (2
	25	64½ (1638)	1110740410		FNS764J3	2	FNS764J11	2	FNS764J5	1	57 (2
	30	77 (1956)			FNS777A3	2	FNS777A11	2	FNS777A5	1	65 (3
23 W/in²	9	18 (457)	FNS718A10X	1	FNS718A3X	1	FNS718A11X	1	FNS718A5X	1	39 (1
Steel Flange	14	25½ (648)	FNS725J10X	3	FNS725J3X	1	FNS725J11X	'1	FNS725J5X	1	45 (2
9-Steel	18	33 (838)	FNS733A10X	3	FNS733A3X	1	FNS733A11X	1 1	FNS733A5X	1	48 (2
(3.6 W/cm ²)	23	40½ (1029)	FNS740J10X	3	FNS740J3X	3	FNS740J11X	1	FNS740J5X	1	53 (2
,	27	48 (1219)	FNS748A10X	3	FNS748A3X	1	FNS748A11X	3	FNS748A5X	1	60 (2
	38	64½ (1638)	INOTHORIOX	J	FNS764J3X	3	FNS764J11X	3	FNS764J5X	1	68 (3
	45	77 (1956)			FNS777A3X	3	FNS777A11X	3	FNS777A5X	3	78 (3
pplications		` ′	Oils, Heat Tr	ansfer C	Dils, Liquid Pa	raffin					(-
16 W/in²③	3	13½ (343)	,		FNN713J12	1			FNN713J13	1	36 (1
Steel Flange	4	18 (457)			FNN718A12	1			FNN718A13	1	40 (1
6-Incoloy®	5	20½ (521)			FNN720J12	1			FNN720J13	1	43 (2
(2.5 W/cm²)	6	25½ (648)			FNN725J12	1			FNN725J13	1	47 (2
	8	33 (838)			FNN733A12	1			FNN733A13	1	52 (2
	10	40½ (1029)			FNN740J12	1			FNN740J13	1	57 (2
	12	48 (1219)			FNN748A12	1			FNN748A13	1	65 (3
16 W/in²③	4.5	13½ (343)			FNN713J12X	1			FNN713J13X	1	39 (1
Steel Flange	6	18 (457)			FNN718A12X	1			FNN718A13X	1	45 (2
9-Incoloy®	7.5	20½ (521)			FNN720J12X	1			FNN720J13X	1	48 (2
(2.5 W/cm ²)	9	25½ (648)			FNN725J12X	1			FNN725J13X	1	53 (2
	12	33 (838)			FNN733A12X	1			FNN733A13X	1	·
	15	40½ (1029)			FNN733A12X FNN740J12X	1			FNN733A13X FNN740J13X	1	60 (2 68 (3
	18	48 (1219)			FNN748A12X	1			FNN748A13X	1	78 (3
	10	-tu (1219)			111117707127	'			. 14147 -07 137	'	70 (3

All flange immersion heaters are Assembly Stock unless otherwise noted.

3 Must be operated 3-phase wye

Availability

Stock: Same day shipment

Assembly Stock: Five to seven working days Standard: 10 working days, depending on

size

Flange Immersion Heaters 5" 150 lb ANSI Flange—WATROD Element

WATROD		Immersed				Cod	le No.				Est.	Ship.
Description	kW	B Dimension	240V~(ac)	No. of	240V~(ac)	No. of	480V~(ac)	No. of	480V~(ac)	No. of	We	ight
		inch (mm)	1-Phase	Circuits	3-Phase	Circuits	1-Phase	Circuits	3-Phase	Circuits	lbs	(kg)
Applications	: Bunk	cer C and #6	Fuel Oils									
8 W/in ² 3	5	40½ (1029)			FNS740J12	1			FNS740J13	1	47	(22)
Steel Flange	6	48 (1219)			FNS748A12	1			FNS748A13	1	52	(24)
6-Steel	8	64½ (1638)			FNS764J12	1			FNS764J13	1	57	(26)
(1.3 W/cm ²)	10	77 (1956)			FNS777A12	1			FNS777A13	1	65	(30)
8 W/in²③	7.5	40½ (1029)			FNS740J12X	1			FNS740J13X	1	53	(24)
Steel Flange	9	48 (1219)			FNS748A12X	1			FNS748A13X	1	60	(28)
9-Steel	12	64½ (1638)			FNS764J12X	1			FNS764J13X	1	68	(31)
(1.3 W/cm ²)	15	77 (1956)			FNS777A12X	1			FNS777A13X	1	78	(36)

6" 150 lb ANSI Flange—WATROD Element

	Immersed				Co	de No.				Est. S	hip.
kW	B Dimension inch (mm)	240V∼(ac) 1-Phase	No. of Circuits	240V∼(ac) 3-Phase	No. of Circuits	480V∼(ac) 1-Phase	No. of Circuits	480V∼(ac) 3-Phase	No. of Circuits	Weiq Ibs	ght (kg)
Clean	Water										
24	15% (391)	FPC715G10	3	FPC715G3	2	FPC715G11	2	FPC715G5	1	73	(33)
36	21% (543)	FPC721G10	4	FPC721G3	2	FPC721G11	2	FPC721G5	1	78	(36)
48	26% (683)			FPC726R3	4	FPC726R11	3	FPC726R5	2	81	(37)
60	32% (822)			FPC732G3	4	FPC732G11	3	FPC732G5	2	85	(39)
72	37% (962)			FPC737R3	4			FPC737R5	2	92	(42)
100	50% (1292)							FPC750R5	4	100	(45)
120	60% (1534)							FPC760G52	4	110	(50)
30	15% (391)	FPC715G10X	3	FPC715G3X	5	FPC715G11X	3	FPC715G5X	1	76	(35)
45	21% (543)	FPC721G10X	5	FPC721G3X	5	FPC721G11X	3	FPC721G5X	5	82	(38)
60	26% (683)			FPC726R3X	5	FPC726R11X	3	FPC726R5X	5	85	(39)
75	32% (822)			FPC732G3X	5	FPC732G11X	5	FPC732G5X	5	90	(41)
90	37% (962)			FPC737R3X	5			FPC737R5X	5	98	(45)
125	50% (1292)							FPC750R5X	5	108	(49)
150	60% (1534)							FPC760G5X2	5	120	(55)
Deion	ized Water,	Demineraliz	ed Wate	r			•		•		
24	15¾ (400)	FPR715N10	3	FPR715N3	2	FPR715N11	2	FPR715N5	1	73	(33)
36	21¾ (552)	FPR721N10	4	FPR721N3	2	FPR721N11	3	FPR721N5	1	78	(36)
48	27¼ (692)			FPR727E3	4	FPR727E11	3	FPR727E5	2	81	(37)
60	32¾ (832)			FPR732N3	4	FPR732N11	3	FPR732N5	2	85	(39)
72	38¼ (972)			FPR738E3	4			FPR738E5	2	92	(42)
100	51¼ (1302)							FPR751E5	4	100	(46)
120	60¾ (1543)							FPR760N5	4	110	(50)
	24 36 48 60 72 100 120 30 45 60 75 90 125 150 Deion 24 36 48 60 72 100	kW B Dimension inch (mm) Clean Water 24 15% (391) 36 21% (543) 48 26% (683) 60 32% (822) 72 37% (962) 100 50% (1292) 120 60% (1534) 30 15% (391) 45 21% (543) 60 26% (683) 75 32% (822) 90 37% (962) 125 50% (1292) 150 60% (1534) Deionized Water, 24 15% (400) 36 21% (552) 48 27% (692) 60 32% (832) 72 38% (972) 100 51% (1302)	kW B Dimension inch (mm) 240V~(ac) 1-Phase Clean Water PPC715G10 24 15% (391) (543) (683) FPC721G10 36 21% (543) (683) FPC721G10 48 26% (683) (603) (600) (1292) FPC721G10 100 50% (1292) (1292) (120) (1534) FPC715G10X 30 15% (391) (543) (600) (603) (753) (753) (753) (753) FPC721G10X 45 21% (543) (683) (753) (kW B Dimension inch (mm) 240V~(ac) 1-Phase No. of Circuits Clean Water PPC715G10 4 3 FPC721G10 4 24 15% (543) (543) 48 (26% (683) (683) 60 (32% (822)) 4 FPC721G10 4 72 37% (962) (1534) (1534) 50% (1292) (1200 (60% (1534)) 30 15% (391) (543) (543) (600 (26% (683)) (75) (32% (822)) 50% (1292) (125) (kW B Dimension inch (mm) 240V~(ac) 1-Phase No. of Circuits 240V~(ac) 3-Phase Clean Water PPC715G10 3 FPC715G3 FPC721G3 FPC721G3 FPC721G3 FPC721G3 FPC721G3 FPC721G3 FPC726R3 FPC732G3 FPC732G3 48 26 ½ (683) 60 32 ½ (822) FPC737R3 FPC737R3 72 37 ½ (962) 100 50 ½ (1292) 120 60 ½ (1534) FPC715G10X FPC737R3 FPC737R3 30 15 ½ (543) 60 ½ (683) 75 32 ½ (822) FPC721G10X FPC721G3X FPC721G3X FPC721G3X FPC722G3X FPC732G3X FPC721G3X FPC732G3X F	kW B Dimension inch (mm) 240V~(ac) 1-Phase No. of Circuits 240V~(ac) 3-Phase No. of Circuits Clean Water 1-Phase No. of Circuits 240V~(ac) 3-Phase No. of Circuits 24 15	Record R	No. of 1-Phase No. of 240V~(ac) 3-Phase No. of 1-Phase No. of 1-Phase	kW B Dimension inch (mm) 240V~(ac) 1-Phase No. of Circuits 240V~(ac) 3-Phase No. of Circuits 480V~(ac) 3-Phase Phase Phase <td> No. of 1-Phase No. of 1-</td> <td>kW B Dimension inch (mm) 240V-⟨ac) 1-Phase No. of Circuits 480V-⟨ac) 1-Phase No. of Circuits 480V-⟨ac) 3-Phase No. of Circuits Weight Clean Water 24 15% (391) (543) (</td>	No. of 1-Phase No. of 1-	kW B Dimension inch (mm) 240V-⟨ac) 1-Phase No. of Circuits 480V-⟨ac) 1-Phase No. of Circuits 480V-⟨ac) 3-Phase No. of Circuits Weight Clean Water 24 15% (391) (543) (

CONTINUED

All flange immersion heaters are Assembly

② Standard

Stock unless otherwise noted.

3 Must be operated 3-phase wye

Availability

Stock: Same day shipment

Assembly Stock: Five to seven working days **Standard**: 10 working days, depending on

size

Flange Immersion Heaters

6" 150 Lbs ANSI Flange—WATROD Element

WATROD		Immersed				Co	ode No.				Est. Ship.
Description	kW	B Dimension inch (mm)	240V~(ac) 1-Phase	No. of Circuits	240V~(ac) 3-Phase	No. of Circuits	480V∼(ac) 1-Phase	No. of Circuits	480V~(ac) 3-Phase	No. of Circuits	Weight Ibs (kg)
Application: I	Deion	ized Water,	Demineralize	ed Wate	r						
60 W/in ²	30	15¾ (400)	FPR715N10X	3	FPR715N3X	5	FPR715N11X	3	FPR715N5X	1	76 (35)
316 SS Flange	45	21¾ (552)	FPR721N10X	5	FPR721N3X	5	FPR721N11X	3	FPR721N5X	5	82 (38)
15-316 SS	60	27¼ (692)			FPR727E3X	5	FPR727E11X	3	FPR727E5X	5	85 (39)
(9.3 W/cm ²)	75	32¾ (832)			FPR732N3X	5	FPR732N11X	5	FPR732N5X	5	90 (41)
Passivated	90	38¼ (972)			FPR738E3X	5			FPR738E5X	5	98 (45)
	125	51¼ (1302)							FPR751E5X	5	108 (49)
	150	60¾ (1543)							FPR760N5X	5	120 (55)
Application: I	Proce	ss Water									
48 W/in²⑤	18	13% (340)	FPN713G10	2	FPN713G3	1	FPN713G11	1	FPN713G5	1	73 (33)
Steel Flange	24	17% (454)	FPN717R10	3	FPN717R3	2	FPN717R11	2	FPN717R5	1	75 (34)
12-Incoloy®	30	20% (518)	FPN720G10	3	FPN720G3	2	FPN720G11	2	FPN720G5	1	78 (36)
(7.5 W/cm ²)	36	25% (645)	FPN725G10	4	FPN725G3	2	FPN725G11	2	FPN725G5	1	81 (37)
	48	32% (835)			FPN732R3	4	FPN732R11	3	FPN732R5	2	85 (39)
	60	40% (1026)			FPN740G3	4	FPN740G11	3	FPN740G5	2	92 (42)
	72	47% (1216)			FPN747R3	4			FPN747R5	2	100 (46)
48 W/in²	23	13% (340)	FPN713G10X	3	FPN713G3X	5	FPN713G11X	1	FPN713G5X	1	76 (35)
Steel Flange	30	17% (454)	FPN717R10X	3	FPN717R3X	5	FPN717R11X	3	FPN717R5X	1	78 (36)
15-Incoloy®	38	20% (518)	FPN720G10X	5	FPN720G3X	5	FPN720G11X	3	FPN720G5X	1	82 (38)
(7.5 W/cm ²)	45	25% (645)	FPN725G10X	5	FPN725G3X	5	FPN725G11X	3	FPN725G5X	5	85 (39)
	60	32% (835)			FPN732R3X	5	FPN732R11X	3	FPN732R5X	5	90 (41)
	75	40% (1026)			FPN740G3X	5	FPN740G11X	5	FPN740G5X	5	98 (45)
	90	47% (1216)			FPN747R3X	5			FPN747R5X	5	108 (49)
Applications:	Forc	ed Air and	Gases, Caust	ic Solu	tions, Degrea	sing So	lutions			•	
23 W/in²56	12	17% (454)	FPNA17R10	2	FPNA17R3	1	FPNA17R11	1	FPNA17R5	1	75 (34)
Steel Flange	18	25% (645)	FPNA25G10	2	FPNA25G3	1	FPNA25G11	1	FPNA25G5	1	81 (37)
12-Incoloy®	24	32% (835)	FPNA32R10	3	FPNA32R3	2	FPNA32R11	2	FPNA32R5	1	85 (39)
(3.6 W/cm ²)	30	40% (1026)	FPNA40G10	3	FPNA40G3	2	FPNA40G11	1	FPNA40G5	1	92 (42)
	36	47% (1216)	FPNA47R10	4	FPNA47R3	2	FPNA47R11	2	FPNA47R5	1	100 (46)
	50	64% (1635)			FPNA64G3	4	FPNA64G11	3	FPNA64G5	2	110 (50)
	60	76% (1953)			FPNA76R3	4	FPNA76R11	3	FPNA76R5	2	118 (54)
23 W/in²	15	17% (454)	FPNA17R10X	3	FPNA17R3X	1	FPNA17R11X	1	FPNA17R5X	1	78 (36)
Steel Flange	23	25% (645)	FPNA25G10X	3	FPNA25G3X	5	FPNA25G11X	1	FPNA25G5X	1	85 (39)
15-Incoloy®	30	32% (835)	FPNA32R10X	3	FPNA32R3X	5	FPNA32R11X	3	FPNA32R5X	1	90 (41)
(3.6 W/cm ²)	38	40% (1026)	FPNA40G10X	5	FPNA40G3X	5	FPNA40G11X	3	FPNA40G5X	1	98 (45)
	45	47% (1216)	FPNA47R10X	5	FPNA47R3X	5	FPNA47R11X	3	FPNA47R5X	5	108 (49)
	63	64% (1635)			FPNA64G3X	5	FPNA64G11X	3	FPNA64G5X	5	120 (55)
	75	76% (1953)			FPNA76R3X	5	FPNA76R11X	5	FPNA76R5X	5	131 (60)
			·				·			C	ONTINUED

All flange immersion heaters are Assembly Stock unless otherwise noted.

Availability

Stock: Same day shipment

Assembly Stock: Five to seven working days Standard: 10 working days, depending on

size

⑤ 240V~(ac) 3-phase can be rewired wye to produce 1/2 more kW and watt density when operated at 480V~(ac) 3-phase.

® Can be rewired wye to produce ½ of the original kW and watt density (3-phase only).

Flange Immersion Heaters 6" 150 lb ANSI Flange—WATROD Element

WATROD		Immersed				Co	de No.				Est. Shi
Description	kW	B Dimension inch (mm)	240V~(ac) 1-Phase	No. of Circuits	240V∼(ac) 3-Phase	No. of Circuits	480V∼(ac) 1-Phase	No. of Circuits	480V∼(ac) 3-Phase	No. of Circuits	Weigh
pplications	: Ligh	tweight Oil	s, Degreasing	Soluti	ons, Heat Trar	nsfer Oil	s				
23 W/in²	12	17% (454)	FPS717R10	2	FPS717R3	1	FPS717R11	1	FPS717R5	1	75 (3
Steel Flange	18	25% (645)	FPS725G10	2	FPS725G3	1	FPS725G11	1	FPS725G5	1	81 (3
12-Steel	24	32% (835)	FPS732R10	3	FPS732R3	2	FPS732R11	2	FPS732R5	1	85 (3
(3.6 W/cm²)	30	40% (1026)	FPS740G10	3	FPS740G3	2	FPS740G11	2	FPS740G5	1	92 (4
	36	47% (1216)	FPS747R10	4	FPS747R3	2	FPS747R11	2	FPS747R5	1	100 (4
	50	64% (1635)		i i	FPS764G3	4	FPS764G11	3	FPS764G5	2	110 (5
	60	76% (1953)			FPS776R3	4	FPS776R11	3	FPS776R5	2	118 (5
23 W/in²			FPS717R10X	3	FPS717R3X	1	FPS717R11X	1	FPS717R5X		· ·
	15	17% (454)						1 1		1	78 (3
Steel Flange	23 30	25% (645)	FPS725G10X	3	FPS725G3X	5 5	FPS725G11X	3	FPS725G5X	1	85 (3
15-Steel		32% (835)	FPS732R10X	3	FPS732R3X		FPS732R11X		FPS732R5X		90 (4
(3.6 W/cm ²)	38	40% (1026)	FPS740G10X	5	FPS740G3X	5	FPS740G11X	3	FPS740G5X	1	98 (4
	45	47% (1216)	FPS747R10X	5	FPS747R3X	5	FPS747R11X	3	FPS747R5X	5	108 (4
	63	64% (1635)			FPS764G3X	5	FPS764G11X	3	FPS764G5X	5	120 (5
	75	76% (1953)			FPS776R3X	5	FPS776R11X	5	FPS776R5X	5	131 (6
pplications	: Med	ium Weight	Oils, Heat Tra	ansfer (Dils, Liquid Pa	raffin					
16 W/in²③	6	13% (340)			FPN713G12	1			FPN713G13	1	73 (
Steel Flange	8	17% (454)			FPN717R12	1			FPN717R13	1	75 (
12-Incoloy®	10	20% (518)			FPN720G12	1			FPN720G13	1	78 (3
(2.5 W/cm²)	12	25% (645)			FPN725G12	1			FPN725G13	1	81 (3
	16	32% (835)			FPN732R12	1			FPN732R13	1	85 (3
	20	40% (1026)			FPN740G12	2			FPN740G13	1	92 (4
	24	47% (1216)			FPN747R12	2			FPN747R13	1	100 (4
16 W/in²③	7.5	13% (340)			FPN713G12X	1			FPN713G13X	1	76 (3
Steel Flange	10	17% (454)			FPN717R12X	1 1			FPN717R13X	1	78 (3
15-Incoloy®	12.5	20% (518)			FPN720G12X	1 1			FPN720G13X	1	82 (3
(2.5 W/cm ²)	15.5	25% (645)			FPN725G12X	1			FPN725G13X	1	85 (3
(2.5 **/****)		` ′								_	
	20	32% (835)			FPN732R12X	5			FPN732R13X	1	90 (4 98 (4
	25	40% (1026)			FPN740G12X	5			FPN740G13X	1	`
	30	47% (1216)	C Fred Oile		FPN747R12X	5			FPN747R13X	1	108 (4
			6 Fuel Oils	<u> </u>		T .				1 .	/
3 W/in²③	8	32% (835)			FPS732R12	1			FPS732R13	1	85 (
Steel Flange	10	40% (1026)			FPS740G12	1			FPS740G13	1	92 (
12-Steel	12	47% (1216)			FPS747R12	1 1			FPS747R13	1	100 (
(1.3 W/cm²)	16.5	64% (1635)			FPS764G12	1			FPS764G13	1	110 (
	20	76% (1953)			FPS776R12	2			FPS776R13	1	118 (
8 W/in²③	10	32% (835)			FPS732R12X	1			FPS732R13X	1	90 (4
Steel Flange	12.5	40% (1026)			FPS740G12X	1			FPS740G13X	1	98 (4
15-Steel	15	47% (1216)			FPS747R12X	1			FPS747R13X	1	108 (4
(1.3 W/cm²)	21	64% (1635)			FPS764G12X	5			FPS764G13X	1	120 (5
	25	76% (1953)			FPS776R12X	5			FPS776R13X	1	131 (6

All flange immersion heaters are Assembly Stock unless otherwise noted.

3 Must be operated 3-phase wye

Availability

Stock: Same day shipment

Assembly Stock: Five to seven working days **Standard**: 10 working days, depending on

size

Flange Immersion Heaters 6" 150 lb ANSI Flange—FIREBAR Element

FIREBAR		lmm	ersed		Coc	le No.		Est.	Ship.
Description	kW		nension	240V~(ac)	No. of	480V~(ac)	No. of		eight
-		inch	· '	3-Phase	Circuits	3-Phase	Circuits	lbs	(kg)
Applications:	Proc	ess V	Vater, E	thylene Gly	col (50%)			
45 W/in²	30	13%	(340)	FPNF13G27				78	(36)
304 SS Flange	37.5	16	(406)	FPNF16A27	5			81	(37)
15-Incoloy®	45	18%	(467)	FPNF18G27	5	FDNF00D00	_	84	(38)
(7 W/cm ²)	60	22%	(581)	FPNF22R27	5	FPNF22R28	5	87	(40)
	75 90	27½ 32½	(708) (835)	FPNF27R27 FPNF32R27	5 5	FPNF27R28 FPNF32R28	5 5	91 95	(42) (43)
	120	42%	(1076)	FFNF32K21	5	FPNF42G28	5	106	(48)
	150	51%	(1318)			FPNF51R28	5	116	(53)
Applications:				hylene Glyco	ol (100%				()
30 W/in ² 3	25	161/2		FPNF16J12	5	FPNF16J13	5	81	(37)
304 SS Flange	32	191/2	(495)	FPNF19J12	5	FPNF19J13	5	84	(38)
15-Incoloy®	42	24½	(622)	FPNF24J12	5	FPNF24J13	5	87	(40)
(4.7 W/cm ²)	52	30	(762)	FPNF30A12	5	FPNF30A13	5	91	(42)
	64	35	(889)	FPNF35A12	5	FPNF35A13	5	95	(43)
	85	45½	(1156)	FPNF45J12	5	FPNF45J13	5	106	(48)
	110	56	(1422)		5	FPNF56A13	5	116	(53)
Applications:	Heat	Trans	sfer Oi	ls, Mineral O	ils, Deg	reasing Soluti	ons		
23 W/in ² 4	19	16½	(419)	FPNF16J20	5			81	(37)
304 SS Flange	24	19½	(495)	FPNF19J20	5			84	(38)
15-Incoloy®	32	241/2	(622)	FPNF24J20	5	FPNF24J19	5	87	(40)
(3.6 W/cm ²)	40	30	(762)	FPNF30A20	5	FPNF30A19	5	91	(42)
	48	35	(889)	FPNF35A20	5	FPNF35A19	5	95	(43)
	64 80	45½ 56	(1156) (1422)	FPNF45J20 FPNF56A20	5 5	FPNF45J19 FPNF56A19	5 5	106 116	(48) (53)
Applications:			, ,				-	110	(33)
15 W/in ² 3	10	13%	(340)		5	iis, Liquid i ai		78	(36)
304 SS Flange	12.5	16	(406)	FPNF16A29	5			81	(37)
15-Incoloy®	15	18%	(467)	FPNF18G29	5			84	(38)
(2.3 W/cm ²)	20	221/8	(581)	FPNF22R29	5	FPNF22R30	5	87	(40)
	25	27%	(708)	FPNF27R29	5	FPNF27R30	5	91	(42)
	30	32%	(835)	FPNF32R29	5	FPNF32R30	5	95	(43)
	40	42%	(1076)	FPNF42G29	5	FPNF42G30	5	106	(48)
	50	51%	(1318)	FPNF51R29	5	FPNF51R30	5	116	(53)
Applications:	Bunk	er C	and #6	Fuel Oils, A	sphalt				
8 W/in²③	6.3			FPNF16J22	5			81	(37)
304 SS Flange	8.1			FPNF19J22	5			84	(38)
15-Incoloy®	10.6			FPNF24J22	5	FPNF24J21	5	87	(40)
(1.3 W/cm ²)	13.1		(762)		5	FPNF30A21	5	91	(42)
	16	35	(889)		5	FPNF35A21	5	95	(43)
	21.3 26	45½ 56	. ,	FPNF45J22 FPNF56A22	5 5	FPNF45J21 FPNF56A21	5 5	106 116	(48) (53)
All flange immer						onerated 3-pha		110	(33)

All flange immersion heaters are Assembly Stock unless otherwise noted.

Availability

Stock: Same day shipment

Assembly Stock: Five to seven working days **Standard**: 10 working days, depending on

size

³ Must be operated 3-phase wye.4 Can be rewired for 1-phase.

Flange Immersion Heaters 8" 150 lb ANSI Flange—WATROD Element

WATROD		Immersed				Co	ode No.				Est.	Ship.
Description	kW	B Dimension inch (mm		No. of Circuits	240V~(ac) 3-Phase	No. of Circuits	480V~(ac) 1-Phase	No. of Circuits	480V~(ac) 3-Phase	No. of Circuits	Wei Ibs	ight (kg)
Application:	Clear	Water										
60 W/in²	50	21¾ (553)			FRC721N32	3	FRC721N11	3	FRC721N5	2	118	(54)
Steel Flange	75 100	29¾ (756) 37¼ (946)			FRC729N3② FRC737E3②	6 6			FRC729N5© FRC737E5	2	126 130	(58)
18-Copper (9.3 W/cm²)	125	37¼ (946) 45¼ (1149)			FRC737E3@ FRC745E3@	6			FRC737E3 FRC745E52	6	130	(59) (60)
(9.5 W/CIII)					FRG743E3©	0						
	150	52¾ (1340)							FRC752N5@	6	137	(63)
	175 200	60¾ (1543) 68¼ (1734)							FRC760N52 FRC768E52	6 6	144 149	(66) (68)
		,	'						FRC/00E3©	0	149	(00)
Application:	Proce	ess Water	1									
48 W/in ² ⑤	50	25¾ (654))		FRN725N32	3	FRN725N11 ²	3	FRN725N5@	2	121	(55)
Steel Flange	75	35¾ (908))		FRN735N32	6			FRN735N52	2	130	(59)
18-Incoloy®	100	44¼ (1124)			FRN744E3	6			FRN744E5	3	132	(60)
(7.5 W/cm ²)	125	5411/16 (1389))		FRN754M32	6			FRN754M5 ²	6	140	(64)
	150	6311/16 (1617))						FRN763M52	6	145	(66)
	175	73% (1859))						FRN773D5	6	151	(69)
	200	8211/16 (2100))						FRN782M5@	6	157	(72)
48 W/in ²	67	26 % (665))		FRN726D3X2	4	FRN726D11X2	3	FRN726D5X2	2	129	(59)
Steel Flange	100	36% (919))		FRN736D3X2	8			FRN736D5X2	4	142	(65)
24-Incoloy®	133	4411/16 (1135))		FRN744M3X2	8			FRN744M5X2	4	147	(67)
(7.5 W/cm ²)	167	5411/16 (1389))		FRN754M3X2	8			FRN754M5X2	8	158	(72)
	200	6311/16 (1618))						FRN763M5X2	8	166	(76)
	233	73% (1859))						FRN773D5X	8	175	(80)
	267	8211/16 (2100))						FRN782M5X ²	8	184	(84)
Application:	Force	d Air and	Gases, Causti	c Soluti	ons, Degreasi	ing Solເ	ıtions					
23 W/in ² 56	30	32¾ (832	FRNA32N102	3	FRNA32N3®	2	FRNA32N11@	2	FRNA32N5@	1	130	(59)
Steel Flange	40	431/4 (1099)			FRNA43E3②	3	FRNA43E112	2	FRNA43E5©	2	132	(60)
18-Incoloy®	50	5111/16 (1313)			FRNA51M3	3	FRNA51M11	3	FRNA51M5	2	137	(63)
(3.6 W/cm ²)		, , , , , , , , ,								_		()
23 W/in²	40	33¾6 (843	FRNA33D10X@	9 4	FRNA33D3X2	4	FRNA33D11X2	2	FRNA33D5X2	2	142	(65)
Steel Flange	53	4311/16 (1110)			FRNA43M3X ^②	4	FRNA43M11X2	3	FRNA43M5X ^②	2	147	(67)
24-Incoloy®	67	5111/16 (1313)			FRNA51M3X2	4	FRNA51M11X2	3	FRNA51M5X2	2	154	(70)
(3.6 W/cm ²)												
	1		<u> </u>	'		·		·		C	ONTIN	NUF

All flange immersion heaters are Assembly Stock unless otherwise noted.

Availability

Stock: Same day shipment

Assembly Stock: Five to seven working days **Standard**: 10 working days, depending on

size

Truck Shipment only

② Standard

⑤ 240V~(ac) 3-phase can be rewired wye to produce ½ more kW and watt density when operated at 480V~(ac) 3-phase. © Can be rewired wye to produce ¼ of the original kW and watt density (3-phase only).

Flange Immersion Heaters

8" 150 lb ANSI Flange—WATROD Element

WATROD		Immersed				Co	de No.				Est. S	Ship.
Description	kW	B Dimension inch (mm)	240V~(ac) 1-Phase	No. of Circuits	240V~(ac) 3-Phase	No. of Circuits	480V~(ac) 1-Phase	No. of Circuits	480V~(ac) 3-Phase	No. of Circuits	Wei	ight (kg)
Applications	s: Ligh	tweight Oil	s, Degreasing	Solution	ons, Heat Tran	sfer Oil	s					
23 W/in²	30	32¾ (832)	FRS732N102	3	FRS732N32	2	FRS732N112	2	FRS732N52	1	130	(59)
Steel Flange	40	43¼ (1099)			FRS743E32	3	FRS743E112	2	FRS743E5	2	132	(60)
18-Steel	50	5111/16 (1313)			FRS751M3	3	FRS751M11	3	FRS751M5	2	137	(63)
(3.6 W/cm ²)	60	62% (1580)			FRS762D32	6	FRS762D112	3	FRS762D5 ²	2	154	(70)
	70	7011/16 (1795)			FRS770M32	6	FRS770M11	6	FRS770M5	2	160	(73)
	80	7911/16 (2024)			FRS779M32	6			FRS779M52	3	172	(78)
23 W/in ²	40	33¾6 (843)	FRS733D10X2	4	FRS733D3X2	4	FRS733D11X2	2	FRS733D5X2	2	142	(65)
Steel Flange	53	4311/16 (1110)			FRS743M3X ²	4	FRS743M11X2	3	FRS743M5X2	2	147	(67)
24-Steel	67	5111/16 (1313)			FRS751M3X2	4	FRS751M11X2	3	FRS751M5X2	2	154	(70)
(3.6 W/cm ²)	80	62% (1580)			FRS762D3X2	8	FRS762D11X2	4	FRS762D5X2	4	166	(76)
	93	7011/16 (1796)			FRS770M3X2	8	FRS770M11X2	6	FRS770M5X ²	4	175	(80)
	107	7911/16 (2024)			FRS779M3X ²	8			FRS779M5X2	4	181	(82)
Applications	s: Med	ium Weight	Oils, Heat Tra	ansfer C	ils, Liquid Pa	raffin						
16 W/in ² 3	17	25¾ (654)			FRN725N122	1			FRN725N132	1	121	(55)
Steel Flange	25	35¾ (908)			FRN735N122	2			FRN735N132	1	130	(59)
18-Incoloy®	33	441/4 (1124)			FRN744E122	2			FRN744E13	1	132	(60)
(2.5 W/cm ²)	42	5411/16 (1389)			FRN754M122	3			FRN754M13@	2	140	(64)
	50	6311/16 (1618)							FRN763M132	2	145	(66)
	58	73% (1859)							FRN773D13	2	151	(69)
	67	8211/16 (2100)							FRN782M13@	2	157	(72)
16 W/in ² 3	23	26¾6 (665)			FRN726D12X2	2			FRN726D13X2	1	129	(59)
Steel Flange	33	36% (919)			FRN736D12X2	2			FRN736D13X2	1	142	(65)
24-Incoloy®	44	4411/16 (1135)			FRN744M12X2	4			FRN744M13X2	2	147	(67)
(2.5 W/cm ²)	56	5411/16 (1389)			FRN754M12X2	4			FRN754M13X2	2	158	(72)
	67	6311/16 (1618)							FRN763M13X2	2	166	(76)
	77	73% (1859)							FRN773D13X2	2	175	(80)
	89	8211/16 (2100)							FRN782M13X2	4	184	(84)
Applications	: Bun	ker C and #	6 Fuel Oils									
8 W/in²3	12.5	43¼ (1099)			FRS743E122	1			FRS743E132	1	132	(60)
Steel Flange	16.5	5111/16 (1313)			FRS751M12	1			FRS751M13	1	137	(62)
18-Steel	20	623/6 (1580)			FRS762D122	2			FRS762D132	1	145	(66)
(1.3 W/cm ²)	24	70 11/16 (1795)			FRS770M12	2			FRS770M13	1	151	(69)
	27	79 11/16 (2024)			FRS779M122	2			FRS779M132	1	155	(71)
8 W/in ² 3	17	4311/16 (1110)			FRS743M12X2	1			FRS743M13X2	1	147	(67)
Steel Flange	22	5111/16 (1313)			FRS751M12X2	2			FRS751M13X2	1	154	(70)
24-Steel	27	62% (1580)			FRS762D12X2	2			FRS762D13X2	1	166	(76)
(1.3 W/cm ²)	32	7011/16 (1796)			FRS770M12X2	2			FRS770M13X ²	1	175	(80)
	36	79 11/16 (2024)			FRS779M12X2	2			FRS779M13X ²	1	181	(82)

All flange immersion heaters are Assembly

Stock unless otherwise noted.

② Standard

3 Must be operated 3-phase wye

Availability

Stock: Same day shipment

Assembly Stock: Five to seven working days **Standard**: 10 working days, depending on

size

Flange Immersion Heaters 10" 150 lb ANSI Flange—WATROD Element

WATROD		Immersed		Cod	de No.		Est	. Ship.
Description	kW	B Dimension inch (mm)	240V~(ac) 3-Phase	No. of Circuits	480V~(ac) 3-Phase	No. of Circuits	W lbs	eight (kg)
Application:	Proce	ss Water						
48 W/in²® Steel Flange 27-Incoloy® (7.5 W/cm²)	190 262	54¾ (1391) 73¼ (1861)			FSN754N52 FSN773E5	9 9	240 260	(109) (118)
,	: Forc	ed Air and	Gases. Caust	tic Solu	tions, Degreas	ina Sol	ution	s
23 W/in ² 56	45	33¼ (845)	FSNA33E3@	3	FSNA33E52	3	165	(75)
Steel Flange	60	43% (1111)	FSNA43N32	3	FSNA43N5©	3	195	(89)
27-Incoloy ® (3.6 W/cm²)	75	51¾ (1314)	FSNA51N3	9	FSNA51N5	3	230	(105)
Applications	: Ligh	tweight Oils	s, Degreasing	Solutio	ons, Heat Tran	sfer Oils	S	
23 W/in²	45	33¼ (845)	FSS733E32	3	FSS733E5@	3	165	(75)
Steel Flange	60	43% (1111)	FSS743N32	3	FSS743N52	3	195	(89)
27-Steel	75	51¾ (1314)	FSS751N3	9	FSS751N5	3	230	(105)
(3.6 W/cm ²)	90	62¼ (1581)			FSS762E52	3	250	(114)
	105	70¾ (1797)			FSS770N5	3	258	(117)
	120	78¾ (2000)			FSS778N52	3	265	(121)
Applications	: Medi	ium Weight	Oils, Heat Tra	ansfer C	Dils, Liquid Par	raffin		
16 W/in²③	63	54¾ (1391)			FSN754N132	3	240	(109)
Steel Flange	75	63¾ (1619)			FSN763N132	3	250	(114)
27-Incoloy®	87	73¼ (1861)			FSN773E13	3	258	(117)
(2.5 W/cm ²)								
Applications	: Bunl	ker C and #	6 Fuel Oils					
8 W/in²③	25	51¾ (1314)	FSS751N12	3	FSS751N13	1	230	(105)
Steel Flange	30	62¼ (1581)	FSS762E122	3	FSS762E132	1	250	(114)
27-Steel	35	70¾ (1797)	FSS770N12	3	FSS770N13	1	258	(117)
(1.3 W/cm ²)	40	78¾ (2000)	FSS778N122	3	FSS778N132	1	265	(121)

All flange immersion heaters are Assembly Stock unless otherwise noted.

Availability

Stock: Same day shipment

Assembly Stock: Five to seven working days **Standard**: 10 working days, depending on

size

- ② Standard
- ③ Must be operated 3-phase wye.
- ⑤ 240V~(ac) 3-phase can be rewired wye to produce ½ more kW and watt density when operated at 480V~(ac) 3-phase.
- © Can be rewired wye to produce ¼ of the original kW and watt density (3-phase only).

Flange Immersion Heaters

12" 150 lb ANSI Flange—WATROD Element

WATROD		Immersed		Cod	de No.		Est	Ship.
Description	kW	B Dimension inch (mm)	240V~(ac) 3-Phase	No. of Circuits	480V~(ac) 3-Phase	No. of Circuits	W lbs	eight (kg
Application: I	Proce	ss Water						
48 W/in² Steel Flange 36-Incoloy® (7.5 W/cm²)	250 350	54% (1387) 73% (1857)			FTN754L5© FTN773C5	6 12	280 291	(127 (132
Applications:	Forc	ed Air and	Gases, Caus	tic Solu	tions, Degreas	ing Sol	ution	S
23 W/in² Steel Flange 36-Incoloy® (3.6 W/cm²)	60 80 100	33½ (841) 43½ (1108) 51½ (1311)			FTNA33C52 FTNA43L52 FTNA51L5	3 3 3	205 240 280	(93 (109 (127
Applications:	Light	tweight Oils	s, Degreasing	g Solutio	ons, Heat Tran	sfer Oils	S	
23 W/in² Steel Flange 36-Steel (3.6 W/cm²)	60 80 100 120 140 160	33½ (841) 43½ (1108) 51½ (1311) 62½ (1578) 70% (1794) 78% (1997)			FTS733C52 FTS743L52 FTS751L5 FTS762C52 FTS770L5 FTS778L52	3 3 3 3 4 4	205 240 280 285 290 300	(93 (109 (127 (130 (132 (136
Applications:	Medi	um Weight	Oils, Heat Tr	ansfer C	ils, Liquid Pa	raffin		
16 W/in²③ Steel Flange 36-Incoloy® (2.5 W/cm²)	83 117	54% (1387) 73% (1857)			FTN754L13@ FTN773C13@	3	280 291	(127 (132
Applications:	Bunk	cer C and #	6 Fuel Oils					
8 W/in²③ Steel Flange 36-Steel (1.3 W/cm²)	34 40 47 54	51% (1311) 62% (1578) 70% (1794) 78% (1997)	FTS751L122 FTS762C122 FTS770L122 FTS778L122	2 2 3 3	FTS751L13 FTS762C13② FTS770L13 FTS778L13②	1 1 2 2	280 285 290 300	(127 (130 (132 (136

All flange immersion heaters are Assembly

Stock unless otherwise noted.

② Standard

3 Must be operated 3-phase wye.

Availability

Stock: Same day shipment

Assembly Stock: Five to seven working days **Standard**: 10 working days, depending on

size

Flange Immersion Heaters 14" 150 lb ANSI Flange—WATROD Element

WATROD		Immersed		Cod	de No.		Est	Ship.
Description	kW	B Dimension inch (mm)	240V~(ac) 3-Phase	No. of Circuits	480V~(ac) 3-Phase	No. of Circuits	W Ibs	eight (kg)
Application:	Proce	ss Water						
48 W/in²	315	54½ (1384)			FWN754J52	15	300	(136)
Steel Flange	375	63½ (1613)			FWN763J5 ²	15	310	(141)
45-Incoloy ® (7.5 W/cm²)								
Applications	Forc	ed Air and (Gases, Caust	tic Solu	tions, Degreas	ing Sol	ution	S
23 W/in²	75	33 (838)			FWNA33A5@	3	225	(102)
Steel Flange	100	43½ (1105)			FWNA43J5 ²	3	255	(116)
45-Incoloy®	125	51½ (1308)			FWNA51J5	5	300	(136)
(3.6 W/cm ²)								
Applications	Ligh	tweight Oils	s, Degreasing	Solution	ons, Heat Trans	sfer Oil	S	
23 W/in²	75	33 (838)			FWS733A52	3	225	(102)
Steel Flange	100	43½ (1105)			FWS743J52	3	255	(116)
45-Steel	125	51½ (1308)			FWS751J5	5	300	(136)
(3.6 W/cm ²)	150	62 (1575)			FWS762A52	5	310	(141)
	175	70½ (1791)			FWS770J5	5	318	(145)
	200	78½ (1994)			FWS778J52	5	330	(150)
Applications	: Medi	um Weight	Oils, Heat Tra	ansfer C	ils, Liquid Par	raffin		
16 W/in²③	105	54½ (1384)			FWN754J13@	3	300	(136)
Steel Flange	125	63½ (1613)			FWN763J132	5	310	(141)
45-Incoloy®								
(2.5 W/cm ²)								
Applications	: Bunk	cer C and #6	6 Fuel Oils					
8 W/in²③	42	51½ (1308)	FWS751J12	3	FWS751J13	3	300	(136)
Steel Flange	50	62 (1575)	FWS762A122	3	FWS762A13@	3	310	(141)
45-Steel	60	70½ (1791)	FWS770J12	3	FWS770J13	3	318	(144)
(1.3 W/cm ²)	67	78½ (1994)	FWS778J122	5	FWS778J132	3	330	(150)

All flange immersion heaters are Assembly

Stock unless otherwise noted.

Auplace atherwise noted 3 Mar

Availability

Stock: Same day shipment

Assembly Stock: Five to seven working days **Standard**: 10 working days, depending on

size

- ^② Standard
- [®] Must be operated 3-phase wye.

Flange Immersion Heaters Build-a-Code

Flange Immersion	
Heater Base Code N	lumber
leater base code in	IUIIIDEI U

(Includes general purpose enclosure without thermostat)

Terminal Enclosure Type

S = General purpose (NEMA 1)
 W = Moisture resistant (NEMA 4)
 E = Explosion resistant (NEMA 7)

E/W = Explosion/moisture resistant (NEMA 7/4)

Thermostat@

Thermocouple3

 $\mathbf{J} = \mathsf{Type} \, \mathsf{J}$

K = Type K

- ① Flange immersion heaters are supplied with a standard, general purpose (NEMA 1) terminal enclosure. A thermostat will not fit the standard general purpose terminal enclosure on 2, 2½ and 3 inch flange sizes.
- ② Code numbers are shown on the Thermostat stock chart on page 425. Check the temperature sensing bulb O.D. to be certain it will fit into the thermowell's I.D.
- ③ Specify Type J or K thermocouple. If overtemp thermocouple specify orientation horizontal, vertical up or vertical down.

How to Order

To order a stock flange heater, please specify:

- Watlow code number
- Flange size and material
- Volts/watts
- Phase
- Options
- Quantity

If the flange immersion heater is to be configured with options, add the suffix letter(s) to the base flange heater code number, as indicated on the Build-a-Code chart.

If our stock units do not meet your application needs, Watlow will make-to-order.

For **made-to-order** units please specify:

- Application, including media heated, flow rate, pressure, and process operating temperatures
- · Volts/watts
- · Watt density
- Phase
- · Number of circuits
- · Number of heating elements
- Element diameter (WATROD only)
- Immersed ('B' dimension) length
- · Flange size, rating and material
- No-heat section below the flange
- Terminal enclosure type
- Options
- Quantity

Availability

Stock: Same day shipment

Assembly Stock: Five to seven

working days

Modified Stock: Five to seven

working days

Standard: 10 working days

Made-to-Order: Five to seven weeks

F.O.B.: Hannibal, Missouri

Options, complexity and quantity may affect availability and lead

times. Consult factory.

③ Stock or Assembly Stock units with catalog options.

On stock chart units: **Quick Ship**

- · Same day on most heaters
- 10 working days on special voltages and/or wattages
- 15 working days on special element lengths

Square Flange **Immersion Heaters**

Designed for use in boilers and industrial storage tanks, square flange immersion heaters offer an energy efficient solution to heating water, oils and degreasing solutions.

Consisting of WATROD or FIREBAR® elements brazed, staked, or welded to a four- or six-bolt flange, these heaters mount directly to a mating flange that is welded to a tank wall or nozzle.

Installation and maintenance is easy. Heater change-out is also simple ... unbolt the flange and replace it with another ... without extensive equipment downtime.

Performance Capabilities

- Watt densities to 100 W/in² (15.5 W/cm²)
- Wattages to 24kW
- Voltages to 480V~(ac)
- Incoloy® sheath temperatures to 1600°F (870°C)

Features and Benefits

21/2. 31/4 and 41/2 inch square flanges easily adapt to application needs.

Flange materials:

Steel
304 stainless steel
Steel
Brass

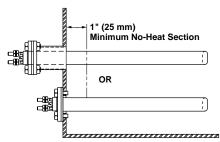
- Asbestos-free gaskets come wire-tied to each flange. Spare gaskets also available.
- Epoxy or silicone resin seals, rated to 250°F (120°C) or 390°F (200°C) respectively, protect elements against moisture and other contaminants.
- **WATROD** hairpins are repressed (recompacted) to maintain MgO density, dielectric strength, heat transfer and life.
- **UL®** and CSA component recognition under file numbers E52951 and 31388 respectively. See pages 268 to 271 for details.

Applications

- Water
- Boiler equipment
- Vapor degreasers
- Fuel oils
- Heat transfer fluids
- · Caustic solutions

Available on request:

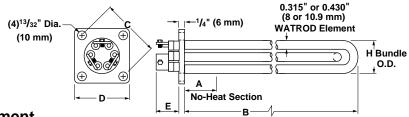
- Sheath materials in copper, steel, 304 and 316 stainless steel and titanium
- · Flange materials in titanium and 316 stainless steel
- Flange sizes to meet specific application needs
- External finishes such as passivation, belt polishing and glass beading


· Other voltage and wattage ratings

Consult your Watlow representative for details.

Square Flange Immersion Heaters

Application Hints


- Determine recommended sheath materials and watt densities by using the *Element and* Assembly Selection Guide on pages 262 to 263. If wattage is not known, consult your Watlow representative.
- Extend the element's no-heat section completely in the fluid at all times to prevent premature
- heater failure. See the accompanying illustration for proper placement of the no-heat section.
- Mount WATROD and FIREBAR square flange heaters horizontally and low in the tank, but above sludge level.
- Periodically remove heaters to inspect and clean the elements.

F.O.B.: Hannibal, Missouri

- Keep terminations clean, dry and tight.
- Minimize problems associated with low liquid level conditions by using a low liquid level sensor.

Heater Dimension	Inch	(mm)
А	11/2	(38)
С	21/2	(64)
D	2 ½	(64)
Е	1	(25)
Н	1 ½	(38)

Immersed Length

2½" Square Flange—WATROD Element

WATROD		Immersed		Code No.						
Description	kW	B Dimension	240V~(ac)	240V~(ac)	480V~(ac)	480V∼(ac)	Weight			
		inch (mm)	1-Phase	3-Phase	1-Phase	3-Phase	lbs (kg)			
pulications, Class and Batchla Water										

Applications: Clean and Potable Water

100 W/in ²	8.0	11¾	(298)	FHN11N102	FHN11N32	FHN11N112	FHN11N5	18	(9)
Steel Flange									
3-Incoloy®									
(15.5 W/cm ²)									

Applications: Forced Air and Gases, Caustic Solutions, Degreasing Solutions

30 W/in² 304 SS Flange 3-Incoloy® (4.7 W/cm²)	3.0 3.75	18½ 23⅓	(470) (586)	FHN18J10① FHN23B10①	FHN18J3 FHN23B3①	FHN18J11@ FHN23B11@	FHN18J5@ FHN23B5@	19 20	(9) (9)
25 W/in ² 304 SS Flange 3-Incoloy [®] (3.9 W/cm ²)	1.5	12	(305)	FHN12A10①	FHN12A3	FHN12A11@	FHN12A5@	18	(8)

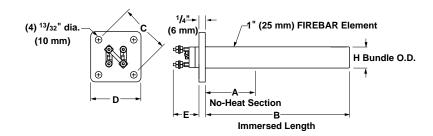
Applications: Bunker C and #6 Fuel Oils

Applications	. 	O u	,, ,	7 1 401 0110			
10 W/in ²	1.0	18½ (4	470)	FHN18J12①	FHN18J13 ²	19	(9)
304 SS Flange	1.25	231/6 (586)	FHN23B12①	FHN23B132	20	(9)
3-Incoloy®							
(1.6 W/cm ²)							
8 W/in ²	0.5	12 (:	305)	FHN12A12①	FHN12A13@	18	(8)
304 SS Flange							
3-Incoloy®							
(1.3 W/cm ²)							

All square flange heaters are Stock unless otherwise noted.

① Assembly Stock② Standard

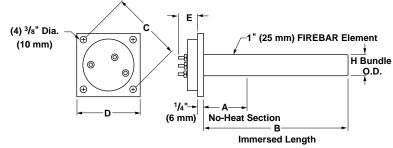
Availability


Stock: Same day shipment

Assembly Stock: Five to seven working days

Standard: Six weeks

Square Flange Immersion Heaters


Heater Dimension	Inch (mm)
А	1½ (38)
С	2½ (64)
D	2½ (64)
Е	1¾ (44)
Н	15/16 (33)

2½" Square Flange—FIREBAR Element

FIREBAR	FIREBAR Immersed					Est. Ship.																		
Description	kW	B Dimension inch (mm)		1 1 1														208V∼(ac) 3-Phase	240V~(ac) 1-Phase	240V~(ac) 3-Phase	480V~(ac) 1-Phase	480V~(ac) 3-Phase	` ,g	
Application	s: Cle	an ar	nd Po	otable Water																				
100 W/in²	5	11½	(292)	FHNFA11J26N2	FHNFA11J10N①	FHNFA11J3N①	FHNFA11J11N2	FHNFA11J5N2	5	(3)														
Steel Flange	8	20¾	(527)	FHNFA20N26N2	FHNFA20N10N①	FHNFA20N3N①	FHNFA20N11N2	FHNFA20N5N①	7	(4)														
1-Incoloy®	10	24%	(619)	FHNFA24G26N2	FHNFA24G10N1	FHNFA24G3N ²	FHNFA24G11N2	FHNFA24G5N①	8	(4)														
(15.5 W/cm ²)	15	3315/16	(862)	FHNFA33S26N ²		FHNFA33S3N ²	FHNFA33S11N ²	FHNFA33S5N①	9	(5)														
80 W/in² Steel Flange	16	22%	(575)	FHNFB22L26J②	FHNFB22L10J②	FHNFB22L3J2	FHNFB22L11J②	FHNFB22L5J②	10	(5)														
1-Incoloy ® (12.4 W/cm²)																								

Heater Dimension	Inch	(mm)
А	1 %6	(40)
С	3111/32	(90)
D	31/8	(74)
Е	1 %	(40)
Н	21/8	(54)

3%" Square Flange—FIREBAR Element

FIREBAR		Immersed		Code No.		Est. Ship.
Description	kW	B Dimension	208V~(ac)	240V~(ac)	480V∼(ac)	Weight
		Inch (mm)	3-Phase	3-Phase	3-Phase	lbs (kg)
Application	s: Cle	an and Po	table Water			

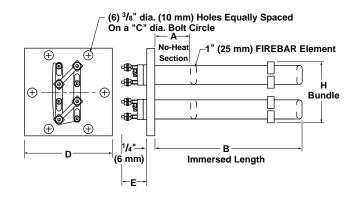
80 W/in ²	18	24½ (622)	FENFB24J26J1	FENFB24J3J2	FENFB24J5J①	12	(6)
Brass Flange							
1-Incoloy®							
(12.4 W/cm ²)							

Applications: Process Water, Ethylene Glycol (50%)

40 W/in ²	9	24½ (622)	FENFB24J26K@	FENFB24J3K ²	FENFB24J5K ²	12	(6)
Brass Flange							
1-Incoloy®							
(6.2 W/cm ²)							

Availability

Stock: Same day shipment Assembly Stock: Five to seven working days


Standard: Six weeks

① Stock

② Standard

Square Flange Immersion Heaters

Heater Dimension	Inch (mm)
А	1 (25)
С	313/16 (97)
D	4½ (114)
E	21/4 (57)
Н	31/32 (82)

4½" Square Flange—FIREBAR Element

FIREBAR		Imm	ersed		Code No.			Est. Ship.	
Description	kW		ension (mm)	208V~(ac) 3-Phase	240V~(ac) 3-Phase	480V∼(ac) 3-Phase	Wei	ight (kg)	
Applications	Applications: Clean and Potable Water								
100 W/in² Steel Flange 2-Incoloy® (15.5 W/cm²)	18	10½	(267)	FGNFB10J26N ²	FGNFB10J3N ²	FGNFB10J5N①	16	(8)	
70 W/in² Steel Flange 2-Incoloy® (10.9 W/cm²)	12	10½	(267)	FGNFB10J26P①	FGNFB10J3P②	FGNFB10J5P①	16	(8)	

Availability

Stock: Same day shipment

Assembly Stock: Five to seven working days

Standard: Six weeks

① Stock

② Standard

How to Order

To order a stock unit, please specify:

- · Watlow code number
- Flange size and material
- Volts/watts
- Phase
- Quantity

If our stock units do not meet your application needs, Watlow can provide a made-to-order unit. For **made-to-order** units, please specify:

③ Stock or Assembly Stock units with catalog options.

- · Application
- Volts/watts
- Phase
- Flange size, dimensions and material
- · Sheath material and diameter
- · Number of elements
- · No-heat section below the flange
- Immersed ('B' dimension) length
- Maximum bundle diameter (H) or clearance hole size
- · Bolt pattern, if not standard
- · Options
- · Quantity

Availability

Stock: Same day shipment

Assembly Stock: Five to seven

working days

Modified Stock³: Five to seven

working days

Standard: Three weeks

Made-to-Order: Four to six weeks

Options, complexity and quantity may affect availability and lead times. Consult factory.

Quick Ship

On stock chart units:

- Five to seven working days on all Assembly Stock heaters
- 10 working days on special voltages and/or wattages
- 15 working days on special element lengths

Tubular and Process Assemblies

Circulation Heaters

Circulation heaters provide a readymade means to install electric heating with a minimal amount of time and labor. This is accomplished by combining heating elements, vessel, insulation, terminal enclosure, mounting brackets and inlet and outlet connections into a complete assembly.

Made from NPT screw plug or ANSI flange heater assemblies mated with a pressure vessel (tank), circulation heaters are designed to heat forced-circulation air, gases or liquids. Ideal for either in-line or side-arm operations, these assemblies direct fluids past FIREBAR® or WATROD heating elements, to deliver fast response and even heat distribution.

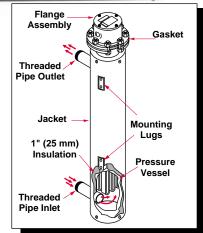
Watlow can meet virtually all your circulation heater assembly needs with made-to-order units. Made-to-order units can be made from a wide range of heating element sheath materials, wattages, vessel sizes and materials, pressure ratings, terminal enclosures and controls.

Performance Capabilities

- Watt densities to 120 W/in² (18.6 W/cm²)
- · Wattages to one megawatt
- UL® and CSA component recognition to 480V~(ac) and 600V~(ac) respectively
- · Ratings to 600 lb pressure class
- Incoloy® sheath temperatures to 1600°F (870°C)
- Passivated 316 stainless steel sheath temperatures to 1200°F (650°C)
- Steel sheath temperatures to 750°F (400°C)
- Copper sheath temperatures to 350°F (175°C)

Features and Benefits

 Standard screw plugs and flanges feature a wide selection of WATROD and FIREBAR elements to meet specific application requirements.


Туре	Sizes (inch)
NPT Screw Plugs	1¼, 2½
ANSI flanges	3, 4, 5, 6, 8, 10, 12, 14

 Flange ratings meet recognized agency standards. ANSI B16.5 Class 150 on:

Four or six inch FIREBAR element flanges

Three to 14 inch WATROD element flanges

- FIREBAR assemblies pack more wattage in a smaller heater bundle—replaces larger flanges with round tubular elements, with a smaller package.
- Compacted MgO insulation filled elements maximize dielectric strength, heat transfer and life.
- One inch (25 mm) thermal insulation, rated to 750°F (400°C), reduces heat loss from the vessel.

- Heavy-gauge steel jacket (shroud) protects thermal insulation and heating vessel. Comes with protective primer coating.
- All catalog units rated to ANSI pressure Class 150. Pressure vessels (tanks) are either carbon or 316 stainless steel.
- NPT or ANSI Class 150 nozzle connections make installation easy. Inlet and outlet nozzle connections are:

Threaded MNPT on eight inch and smaller tanks

Class 150 flanged connections on 10 inch and larger tanks

UL® is a registered trademark of Underwriter's Laboratories, Inc. Incoloy® is a registered trademark of Special Metals Corporation.

Circulation Heaters

Features and Benefits

- Mounting lugs are welded onto the tank wall of all 2½ inch NPT and larger units. Lugs are flush with outer insulation jacket and provide mounting support.
- Flange mounting holes straddle centerline to comply with industry standards.
- Standard, general purpose (NEMA 1) terminal enclosures offer easy access to terminal wiring.
- UL® and CSA component recognition under file numbers E52951 and 31388 respectively. See pages 268 to 271 for details.
- Branch circuits are subdivided by National Electric Code (NEC) requirements to a maximum of 48 amps per circuit.

Applications

- · Water:
 - Deionized
 - Demineralized
 - Clean
 - Potable
 - **Process**

- · Industrial water rinse tanks
- Hydraulic oil, crude, asphalt
- Lubricating oils at API specified watt densities
- · Heat transfer oil

- Paraffin
- · Caustic cleaners
- Nitrogen, hydrogen and other air/gas systems
- Superheating steam

Options

Terminal Enclosures

General purpose (NEMA 1) terminal enclosures, without thermostats, are supplied on all Watlow circulation heaters. Moisture and explosion resistant ratings are available to meet specific application needs. For screw plug terminal enclosures,

Thermostats

To provide process temperature control, Watlow offers optional single and double pole thermostats.

refer to **pages 322 to 324**. For flange terminal enclosures, refer to **pages 340 to 341**.

Stand-off Terminal Enclosures

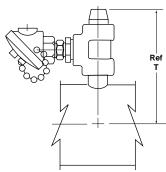
Stand-off terminal enclosures help protect terminal enclosures against excessive temperatures. For details, refer to **page 340**.

Thermostats are typically mounted in the terminal enclosure. Optional side mounting on vessel also available.

CSA Certified Enclosures

To meet agency recognition requirements, CSA certified moisture and/or explosion resistant terminal enclosures are available. Consult your Watlow representative for details.

See Screw Plug Immersion
Heaters, page 324, and Flange
Immersion Heaters, on page 342
for details.


Thermocouples

To sense process or element sheath temperature, ASTM Type J or K thermocouples are available.

See Screw Plug Immersion Heaters, page 325 and Flange Immersion Heaters, on page 342 for details.

Process Thermocouple in Nozzle

(Must specify which nozzle)

Ref. Tank Size	Ref. Nozzle Size	Dimension "A"
1 1/4	¾ NPT	8 ¾6
2 ½	1 NPT	8 3/16
3	1 NPT	8 3/1.6
4	1 ½ NPT	10 %
5	2 NPT	11 1/16
6	2 ½ NPT	13 ¾
8	2 ½ NPT	14 %

For 10 inch and larger tanks consult factory for dimension.

Circulation Heaters

Options

Continued

Branch Circuits

Branch circuits are subdivided by National Electrical Code (NEC) requirements to a maximum of

48 amps per circuit. Consult factory for circuit requirements other than those listed in the stock charts.

Wattages and Voltages

Watlow routinely supplies circulation heaters with 120 to 480V~(ac) as well as wattages from 500 watts to one megawatt. If required, Watlow will configure circulation heaters

with voltages and wattages outside these parameters.

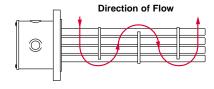
For more information on special voltage and wattage configurations, consult your Watlow representative.

Sheath Materials

The following sheath materials are available on WATROD and FIREBAR heating elements:

Standard Sheath Materials

WATROD	Incoloy® 316 stainless steel Steel Copper
FIREBAR	Incoloy®


Made-to-Order Sheath Materials

WATROD	304 stainless steel Monel®			
FIREBAR	304 stainless steel			

Exotic Sheath Materials

Consult your Watlow representative for details and availability.

Baffles

Baffles mounted on the heating element bundle enhance and/or modify liquid or gas flow for better heat transfer.

For critical sheath temperature and low flow conditions, baffles may be required.

Consult your Watlow representative for details.

Pressure Vessels

All standard pressure vessel (tank) materials are rated to 150 lb and made from:

- Carbon steel
- 316 stainless steel

All catalog pressure vessels (tanks) are steel unless otherwise noted.

316 stainless steel pressure vessels (tanks) are passivated on all wetted surfaces. Available from Assembly Stock on 2½ inch NPT and four or six inch ANSI flange circulation heaters.

Made-to-order units can be made in a variety of materials, flange sizes and pressure classes. To order, specify **pressure vessel (tank) size, material** and **pressure class**.

ANSI ratings to 600 lb are available for high-pressure applications. For pressure class ratings above 600 lb, as well as other vessel materials, consult Watlow Process Systems in Troy, Missouri.

Passivated Finish

For critical applications, passivation will remove free iron from all wetted surfaces.

Consult factory for details.

Circulation Heaters

Options

Continued

Gaskets

Rubber, asbestos-free and spiral wound gaskets are available for all heater flange, and inlet and outlet flange sizes.

Watlow recommends ordering spares in case replacement becomes necessary.

To order, specify gasket type, flange size/rating and process operating temperature.

For details on gasket materials and temperature ratings, see page 343.

Inlet and Outlet Nozzle Connections

All inlet and outlet materials are compatible with the pressure vessel material and pressure class rating. Vessel sizes from 1½ to eight inches are typically configured with MNPT (Male National Pipe Thread) nozzles. Optional NPT and flange sizes can be supplied to mate with existing piping.

10 inch and larger vessels are supplied with Class 150 inlet and outlet flanges. Optional Class 300 or Class 600 can be provided to mate with existing piping.

To order, specify **type**, **size** and **pressure class** rating for both inlet and outlet nozzle/flange connections.

High Temperature Thermal Insulation

To further minimize heat loss, the pressure vessel's standard one inch thermal insulation wrap may be replaced with thicker or higher temperature insulation. For more information, consult your Watlow representative.

To order, specify insulation thickness, standard or high temperature insulation and temperature rating.

Vessels may be supplied with a primer coating without insulation. To order, specify **no insulation**.

Protective Steel Jacket (Shroud)

To protect circulation heaters from weather or wash-down conditions, fully welded (weatherproof) or partially welded (standard) outer protective steel jackets are available. Standard steel, or made-to-order 304 or 316 stainless steel

can be supplied. Jacket diameter is dependent upon thermal insulation thickness.

To order, specify **protective steel jacket, material type** and **weatherproof**, if desired.

Support Saddles

To mate with an existing installation, customized support saddle(s) and/or mounting lugs are available.

To order, specify **mounting lugs** or **support saddles** and supply a dimensional drawing.

Circulation Heaters

Maximum Velocities

The rate at which a gas or liquid flows through inlet and outlet pipes is critical to maintaining the desired output temperature. Pressure drop through the circulation heater must be considered to properly size blowers or pumps. The *Maximum Velocity to Avoid Excessive Pressure Drop* chart gives recommended maximum velocities, in feet per second and meters per second of gas or liquid being heated and nominal pipe size.

Maximum Velocity to Avoid Excessive Pressure Drop

Fluid	Nominal Pipe Size	Maximum	Velocity
	inch	ft/sec	(m/sec)
Gases	All	200	(61.0)
Liquid	4 and smaller	10	(3.0)
Liquid	6-8	15	(5.0)
Liquid	10-12	19	(6.0)
Liquid	14-16	21	(6.4)
Liquid	18-20	23	(7.0)
Liquid	24	24	(7.3)

Vessel Orientation Guidelines

Correctly orienting the heating vessel assures lower terminal enclosure temperatures and element immersion. Detailed instructions on vessel orientation are contained in the *Installation and Maintenance Instructions* that accompanies all circulation heaters.

The following are guidelines for vessel orientation in liquid and gas heating applications.

Liquids

Orient circulation heater:

- Horizontally with inlet and outlet pipes pointing up
- Vertically with the terminal enclosure up and the inlet pipe on the bottom

These orientations ensure the heating elements will be immersed at all times and help prevent premature failure.

Air or Gases

Orient circulation heater:

- Horizontally with the inlet nozzle closest to the terminal enclosure.
- Vertically with terminal enclosure at the bottom of the tank. Use the nozzle nearest the bottom as the inlet connection.

If installation constraints do not allow mounting in accordance with these guidelines, consult your Watlow representative.

Application Hints

- Select the recommended heating element sheath material and watt density for the substance being heated. Use the Supplemental Applications Chart on pages 263 to 266. If unable to determine the correct heating element type and material, consult your Watlow representative.
- Assure selecting proper vessel by considering the pressure or flow rate, process temperature and corrosiveness of the media being heated. If assistance with vessel selection is required, consult your Watlow representative.
- For maintenance/replacement procedures, retain an area twice the circulation heater's overall length to permit easy removal and inspection of screw plug or flange heater assemblies.
- Choose a FIREBAR assembly when you require:
 - A smaller package More kilowatts or lower watt density in an equally sized WATROD circulation tank.
- Minimize problems associated with low flow or low liquid level conditions with a low liquid level sensor and/or sheath high-limit control.

- Ensure wiring integrity by making sure terminal enclosure temperature does not exceed 400°F (205°C).
- Protect against electrical shock by properly grounding the unit per NEC requirements.
- One or more circulation heaters may be connected in series to achieve the desired total kilowatt or temperature output.

Circulation Heaters

Replacement Heater Assemblies

To help assure minimum process downtime, it's advisable to order and keep on hand a replacement flange or screw plug heater assembly. Spare and/or replacement screw plug or flange heaters can be ordered by simply providing the complete circulation heater code number and specifying "replacement heater only."

B Dimension

(mm)

(381)

(584)

(813)

(1346)

in

15

23

32

C Dimension

(mm)

(79)

(76)

(102)

(102)

in

31/8

3

4

A Dimension

(mm)

(625)

(829)

(1083)

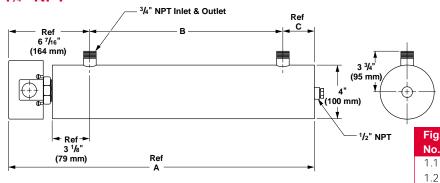
(1616)

in

24%

32%

42%


63%

1.3

1.4

F.O.B.: Hannibal, Missouri

11/4" NPT Screw Plug—WATROD Element

WATROD			Code N	lo.	Est. Ship.			
Description	kW	Fig. No.	120/240V~(ac) 1-Phase	240V~(ac) 1-Phase	Weight lbs (kg)			
Application, Class Mater								

Application: Clean Water

60 W/in ² 4	3.0	1.1	CBEC15A6		23 (11)
Steel Tank	4.0	1.1		CBEC19A10	29 (14)
2-Copper	5.0	1.2		CBEC23J10	29 (14)
(9.3 W/cm ²)	6.0	1.2		CBEC27J10	31 (14)

Applications: Forced Air and Gases, Caustic Solutions, Degreasing Solutions

23 W/in ² 4	1.0	1.1	CBEN13G6	21	(10)
Steel Tank	1.5	1.1	CBEN19A6	29	(14)
2-Incoloy®	2.0	1.2	CBEN24G6	29	(14)
(3.6 W/cm ²)					

Applications: Lightweight Oils, Degreasing Solutions, Heat Transfer Oils

23 W/in ² 4	1.5	1.1	CBES19G6	29	(14)
Steel Tank	2.0	1.2	CBES25G6	29	(14)
2-Steel					
(3.6 W/cm ²)					

All circulation heaters are Assembly Stock unless otherwise noted.

Wired for higher voltage.

Availability

Assembly Stock: Five to seven working days

Standard: 10 working days

Circulation Heaters

11/4" NPT Screw Plug—FIREBAR Element

FIREBAR				Code	No.		Est.	Ship.
Description	kW	Fig. No.	240V~(ac) 1-Phase	240V~(ac) 3-Phase	480V~(ac) 1-Phase	480V~(ac) 3-Phase	We Ibs	ight (kg)
Applications	s: Clea	n and	l Potable Wate	er				
90 W/in2®	1.5	1.1	CBDNF7R102⑦		CBDNF7R112⑦		26	(12
Steel Tank	3.0	1.1	CBDNF11G1027		CBDNF11G112		26	(12
1-Incoloy®	5.0	1.1		CBDNF16G3		CBDNF16G5	26	(12
(14 W/cm ²)	6.5	1.2		CBDNF19G3		CBDNF19G5	30	(14
	8.5	1.2		CBDNF24L3		CBDNF24L5	31	(14
	10.5	1.3		CBDNF29R3		CBDNF29R5	43	(20
	12.75	1.3		CBDNF34R3		CBDNF34R5	44	(20
	17.0	1.4		CBDNF45G3		CBDNF45G5	69	(32
	21.5	1.4				CBDNF55R5	71	(33
Applications	s: Proc	ess V	Vater, Ethylen	e Glycol (50%	6)			
45 W/in ² ®	2.0	1.1		CBDNF13A27			25	(12
Steel Tank	2.5	1.1		CBDNF15J27			26	(12
1-Incoloy®	3.0	1.2		CBDNF18A27			30	(14
(7 W/cm ²)	4.0	1.2		CBDNF22J27		CBDNF22J28	31	(14
	5.0	1.3		CBDNF27J27		CBDNF27J28	43	(20
	6.0	1.3		CBDNF32J27		CBDNF32J28	44	(20
	8.0	1.4		CBDNF42A27		CBDNF42A28	69	(32
	10.0	1.4		CBDNF51J27		CBDNF51J28	71	(33
Applications	s: Cool	king (Oils, Ethylene	Glycol (100%	6)			
30 W/in23	1.7	1.1		CBDNF16G12		CBDNF16G13	26	(12
Steel Tank	2.2	1.2		CBDNF19G12		CBDNF19G13	30	(14
1-Incoloy®	2.8	1.2		CBDNF24L12		CBDNF24L13	31	(14
(4.7 W/cm ²)	3.5	1.3		CBDNF29R12		CBDNF29R13	43	(20
	4.25	1.3		CBDNF34R12		CBDNF34R13	44	(20
	5.7	1.4		CBDNF45G12		CBDNF45G13	69	(32
	7.2	1.4		CBDNF55R12		CBDNF55R13	71	(33
Applications	: Heat	Tran	sfer Oils, Lub	rication Oils,	Mineral Oil, D	egreasing So	olutio	ns
23 W/in ² ®	1.25	1.1		CBDNF16G20			26	(12
Steel Tank	1.65	1.2		CBDNF19G20			30	(14
1-Incoloy®	2.15	1.2		CBDNF24L20		CBDNF24L19	31	(14
(3.6 W/cm ²)	2.65	1.3		CBDNF29R20		CBDNF29R19	43	(20
	3.20	1.3		CBDNF34R20		CBDNF34R19	44	(20
	4.25	1.4		CBDNF45G20		CBDNF45G19	69	(32
	5.40	1.4		CBDNF55R20		CBDNF55R19	71	(33

All circulation heaters are Assembly Stock

An circulation heaters are Assembly Stock unless otherwise noted.

Availability

Assembly Stock: Five to seven working days

Standard: 10 working days

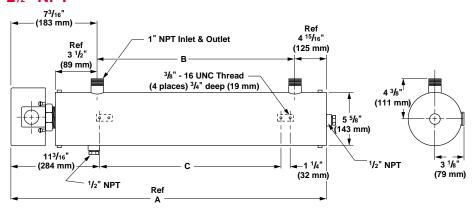
Truck Shipment only

- ② Standard③ Must be operated 3-phase wye.
- Available in 1-phase only.Can be wired 1-phase.

Circulation Heaters

11/4" NPT Screw Plug—FIREBAR Element

FIREBAR				Code	e No.		Est.	Ship.
Description kW		Fig. No.	240V~(ac) 240V~(ac 1-Phase 3-Phase		480V∼(ac) 1-Phase	480V∼(ac) 3-Phase	We Ibs	ight (kg)
Applications	: Medi	ium W	eight Oils, H	eat Transfer O	ils, Lube Oi	ls, Liquid Para	ffin	
15 W/in ² ③	0.67	1.1		CBDNF13A29			25	(12)
Steel Tank	0.83	1.1		CBDNF15J29			26	(12
1-Incoloy®	1.00	1.2		CBDNF18A29			30	(14
(2.3 W/cm ²)	1.33	1.2		CBDNF22J29		CBDNF22J30	31	(14
	1.67	1.3		CBDNF27J29		CBDNF27J30	43	(20
	2.00	1.3		CBDNF32J29		CBDNF32J30	44	(20
	2.67	1.4		CBDNF42A29		CBDNF42A30	69	(32
	3.30	1.4		CBDNF51J29		CBDNF51J30	71	(33
Applications	: Bunl	ker C a	and #6 Fuel	Oils, Asphalt				
8 W/in2③	0.43	1.1		CBDNF16G22			26	(12
Steel Tank	0.55	1.2		CBDNF19G22			30	(14
1-Incoloy®	0.70	1.2		CBDNF24L22		CBDNF24L21	31	(14
(1.3 W/cm ²)	0.88	1.3		CBDNF29R22		CBDNF29R21	43	(20
	1.08	1.3		CBDNF34R22		CBDNF34R21	44	(20
	1.40	1.4		CBDNF45G22		CBDNF45G21	69	(31
	1.80	1.4		CBDNF55R22		CBDNF55R21	71	(32


All circulation heaters are Assembly Stock unless otherwise noted.

Truck Shipment only

Must be operated 3-phase wye only.

Availability
Assembly Stock: Five to seven working days
Standard: 10 working days

2½" NPT

21/2" NPT Screw Plug

Fig. No.	A Dimension in (mm)	B Dimension in (mm)	C Dimension in (mm)
2.1	3411/16 (881)	22½ (572)	16½ (419)
2.2	4411/16 (1135)	32½ (1129)	26½ (673)
2.3	57¾ (1453)	45 (1143)	39 (991)
2.4	6311/16 (1618)	51½ (1308)	46½ (1181)
2.5	3411/16 (881)	22½ (572)	16½ (419)
2.6	44 ¹¹ /16 (1135)	32½ (1129)	26½ (673)
2.7	57¾。 (1453)	45 (1143)	39 (991)

Circulation Heaters

21/2" NPT Screw Plug—WATROD Element

WATROD			Cod	e No.	Est. Ship
Description	kW	Fig.	240V~(ac)	480V~(ac)	Weight
		No.	3-Phase	3-Phase	lbs (kg
Application:	Clean	Wate	er		
60 W/in ²	6.0	2.5	CBLC714L3	CBLC714L5	24 (11
Steel Tank	7.5	2.5	CBLC717L3	CBLC717L5	24 (11
3-Copper	9.0	2.5	CBLC720L3	CBLC720L5	26 (12
(9.3 W/cm ²)	12.0	2.6	CBLC726C3	CBLC726C5	27 (13
	15.0	2.6	CBLC731L3	CBLC731L5	29 (14
	18.0	2.7	CBLC737C3	CBLC737C5	30 (14
Application:	Deion	ized	Water, Demin	eralized Wate	r
60 W/in ²	6.0	2.5	CBLR714L3	CBLR714L5	24 (11
316 SS Tank	7.5	2.5	CBLR717L3	CBLR717L5	24 (11
3-316 SS	9.0	2.5	CBLR720L3	CBLR720L5	26 (12
(9.3 W/cm ²)	12.0	2.6	CBLR726C3	CBLR726C5	27 (13
Passivated	15.0	2.6	CBLR731L3	CBLR731L5	29 (14
	18.0	2.7	CBLR737C3	CBLR737C5	30 (14
Application:	Proce	ss W	ater		
48 W/in ²	6.0	2.5	CBLN717G3	CBLN717G5	24 (11
Steel Tank	7.5	2.5	CBLN719R3	CBLN719R5	26 (12
3-Incoloy®	9.0	2.5	CBLN724R3	CBLN724R5	27 (13
(7.5 W/cm ²)	12.0	2.6	CBLN732G3	CBLN732G5	29 (14
•	15.0	2.7	CBLN739R3	CBLN739R5	31 (14
	18.0	2.7	CBLN747G3	CBLN747G5	32 (15
Applications	: Forc	ed A	ir and Gases,	Caustic Solu	tions, D
23 W/in ² 56	3.0	2.5	CBLNA17G3	CBLNA17G5	24 (11
Steel Tank	4.5	26	CBI NA24R3	CBI NA24R5	27 (13

reasing Solutions

23 W/in ² 56	3.0	2.5	CBLNA17G3	CBLNA17G5	24 (11)
Steel Tank	4.5	2.6	CBLNA24R3	CBLNA24R5	27 (13)
3-Incoloy®	6.0	2.6	CBLNA32G3	CBLNA32G5	29 (14)
(3.6 W/cm ²)	7.5	2.7	CBLNA39R3	CBLNA39R5	31 (14)
	9.0	2.7	CBLNA47G3	CBLNA47G5	32 (15)

Applications: Lightweight Oils, Degreasing Solutions, Heat Transfer Oils

23 W/in ² 6	3.0	2.5	CBLS717E3	CBLS717E5	24 (11)
Steel Tank	4.5	2.5	CBLS724N3	CBLS724N5	27 (13)
3-Steel	6.0	2.6	CBLS732E3	CBLS732E5	29 (14)
(3.6 W/cm ²)	7.5	2.7	CBLS739N3	CBLS739N5	31 (14)
	9.0	2.7	CBLS747E3	CBLS747E5	32 (15)

Applications: Medium Weight Oils, Heat Transfer Oils, Lube Oils, Liquid Paraffin

16 W/in ² 3	2.0	2.5	CBLN717G12	CBLN717G13	24 (11)
Steel Tank	2.5	2.5	CBLN719R12	CBLN719R13	26 (12)
3-Incoloy®	3.0	2.5	CBLN724R12	CBLN724R13	27 (13)
(2.5 W/cm ²)	4.0	2.6	CBLN732G12	CBLN732G13	29 (14)
	5.0	2.7	CBLN739R12	CBLN739R13	31 (14)
	6.0	2.7	CBLN747G12	CBLN747G13	32 (15)

Applications: Bunker C and #6 Fuel Oils

8 W/in ² 3	2.0	2.6	CBLS732E12	CBLS732E13	29	(14)
Steel Tank	3.0	2.7	CBLS747E12	CBLS747E13	32	(15)
3-Steel						
(1.3 W/cm ²)						

All circulation heaters are Assembly Stock unless otherwise noted.

Availability

Assembly Stock: Five to seven working days Standard: 10 working days

- ③ Must be operated 3-phase wye only.
- ⑤ 240V~(ac) can be wired wye and operated at 480V~(ac) 3-phase to produce ½ more kW and watt density.
- © Can be wired wye to produce ½ of the original kW and watt density (3-phase only).

Circulation Heaters

21/2" NPT Screw Plug—FIREBAR Element

FIREBAR			Code	Est.	Ship.					
Description	kW	Fig.	240V~(ac)	~(ac) 480V~(ac)		ight				
		No.	3-Phase	3-Phase	lbs	(kg)				
Applications: Clean and Potable Water										
90 W/in ² ®	15.0	2.1	CBLNF15C3	CBLNF15C5	22	(10)				
Steel Tank	20.0	2.1	CBLNF18C3	CBLNF18C53	23	(11)				
3-Incoloy®	25.0	2.1		CBLNF23C5	31	(14)				
(14 W/cm ²)	32.0	2.2		CBLNF28L5	34	(16)				
	38.0	2.2		CBLNF33L5	35	(16)				
Applications	s: Proc	ess V	Vater, Ethylen	e Glycol (50%	6)					
		1			1					

45 W/in ² ®	6.0	2.1	CBLNF12A27		21 (10)
Steel Tank	7.5	2.1	CBLNF14J27		22 (10)
3-Incoloy®	9.0	2.1	CBLNF17A27		23 (11)
(7 W/cm ²)	12.0	2.1	CBLNF21J27	CBLNF21J28	31 (14)
'	15.0	2.2	CBLNF26J27	CBLNF26J28	34 (16)
	18.0	2.2	CBLNF31J27	CBLNF31J28	35 (16)
	24.0	2.3		CBLNF41A28	44 (20)
	30.0	2.4		CBLNF50J28	52 (24)

Applications: Cooking Oils, Ethylene Glycol (100%)

30 W/in ² ③	5.0	2.1	CBLNF15C12	CBLNF15C13	22 (10)
Steel Tank	6.5	2.1	CBLNF18C12	CBLNF18C13	23 (11)
3-Incoloy®	8.5	2.1	CBLNF23C12	CBLNF23C13	31 (14)
(4.7 W/cm ²)	10.5	2.2	CBLNF28L12	CBLNF28L13	34 (16)
	12.8	2.2	CBLNF33L12	CBLNF33L13	35 (16)
	17.0	2.3	CBLNF44C12	CBLNF44C13	44 (20)
	21.5	2.4		CBLNF54L13	52 (24)

Applications: Heat Transfer Oils, Mineral Oil, Degreasing Solutions

23 W/in ² ®	3.8	2.1	CBLNF15C20		22 (10)
Steel Tank	4.9	2.1	CBLNF18C20		23 (11)
3-Incoloy®	6.4	2.1	CBLNF23C20	CBLNF23C19	31 (14)
(3.6 W/cm ²)	7.9	2.2	CBLNF28L20	CBLNF28L19	34 (16)
	9.6	2.2	CBLNF33L20	CBLNF33L19	35 (16)
	12.8	2.3	CBLNF44C20	CBLNF44C19	44 (20)
	16.1	2.4	CBLNF54L20	CBLNF54L19	52 (24)

Applications: Medium Weight Oils, Heat Transfer Oils, Lube Oils, Liquid Paraffin

15 W/in ² ③	2.0	2.1	CBLNF12A29		21	(10)
Steel Tank	2.5	2.1	CBLNF14J29		22	(10)
3-Incoloy®	3.0	2.1	CBLNF17A29		23	(11)
(2.3 W/cm ²)	4.0	2.1	CBLNF21J29	CBLNF21J30	31	(14)
	5.0	2.2	CBLNF26J29	CBLNF26J30	34	(16)
	6.0	2.2	CBLNF31J29	CBLNF31J30	35	(16)
	8.0	2.3	CBLNF41A29	CBLNF41A30	44	(20)
	10.0	2.4	CBLNF50J29	CBLNF50J30	52	(24)

Applications: Bunker C and #6 Fuel Oils, Asphalt

8 W/in ² ③	1.25	2.1	CBLNF15C22		22	(10)
Steel Tank	1.63	2.1	CBLNF18C22		23	(10)
3-Incoloy®	2.13	2.1	CBLNF23C22	CBLNF23C21	31	(14)
(1.3 W/cm ²)	2.63	2.2	CBLNF28L22	CBLNF28L21	34	(15)
	3.19	2.2	CBLNF33L22	CBLNF33L21	35	(16)
	4.25	2.3	CBLNF44C22	CBLNF44C21	44	(20)
	5.38	2.4	CBLNF54L22	CBLNF54L21	52	(24)

All circulation heaters are Assembly Stock unless otherwise noted.

Availability

Assembly Stock: Five to seven working days **Standard:** 10 working days

Note: Assembly Stock may be shipped same day if ordered before 11:00 am CST.

3 Must be operated 3-phase wye only.

® Can be wired 1-phase.

Circulation Heaters

3" Flange

3" 150 lb ANSI Flange-WATROD Element

WATROD				Co		Est.	Est. Ship.		
Description	kW	Fig. No.	240V~(ac) 1-Phase	240V~(ac) 3-Phase	480V∼(ac) 1-Phase	480V~(ac) 3-Phase	We Ibs	Weight lbs (kg)	
Application:	Clean	Wate	er						
60 W/in ²	6.0	3.1	CFMC715J10	CFMC715J3	CFMC715J11	CFMC715J5	66	(30)	
Steel Tank	9.0	3.1	CFMC721J10	CFMC721J3	CFMC721J11	CFMC721J5	70	(32)	
3-Copper	12.0	3.2		CFMC727A3	CFMC727A11	CFMC727A5	80	(37)	
(9.3 W/cm ²)	15.0	3.2		CFMC732J3	CFMC732J11	CFMC732J5	96	(44)	
	18.0	3.3		CFMC738A3	CFMC738A11	CFMC738A5	98	(45)	

48 W/in ² ⑤	6.0	3.1	CFMN718A10	CFMN718A3	CFMN718A11	CFMN718A5	68	(31)
Steel Tank	7.5	3.1	CFMN720J10	CFMN720J3	CFMN720J11	CFMN720J5	70	(32)
3-Incoloy®	9.0	3.2	CFMN725J10	CFMN725J3	CFMN725J11	CFMN725J5	78	(36)
(7.5 W/cm ²)	12.0	3.2		CFMN733A3	CFMN733A11	CFMN733A5	96	(44)
	15.0	3.3		CFMN740J3	CFMN740J11	CFMN740J5	100	(46)
	18.0	3.3		CFMN748A3	CFMN748A11	CFMN748A5	107	(49)

Applications: Forced Air and Gases, Caustic Solutions, Degreasing Solutions

23 W/in ² 56	3.0	3.1	CFMNA18A10	CFMNA18A3	CFMNA18A11	CFMNA18A5	68	(31)
Steel Tank	4.5	3.2	CFMNA25J10	CFMNA25J3	CFMNA25J11	CFMNA25J5	78	(36)
3-Incoloy®	6.0	3.2	CFMNA33A10	CFMNA33A3	CFMNA33A11	CFMNA33A5	96	(44)
(3.6 W/cm ²)	7.5	3.3	CFMNA40J10	CFMNA40J3	CFMNA40J11	CFMNA40J5	100	(46)
	9.0	3.3	CFMNA48A10	CFMNA48A3	CFMNA48A11	CFMNA48A5	107	(49)

CONTINUED

A Dimension

453/16 (1148)

5711/16 (1465)

in

353/16

(mm)

(894)

B Dimension

(mm)

(573)

(826)

(1143)

in

22½

321/2

45

C Dimension

(mm)

(419)

(673)

(991)

in

161/2

261/2

39

Fig.

All circulation heaters are Assembly Stock unless otherwise noted.

Availability

Assembly Stock: Five to seven working days Standard: 10 working days

Truck Shipment only

- ⑤ 240V~(ac) can be wired wye and operated at 480V~(ac) 3-phase to produce 1/2 more kW and watt density.
- © Can be wired wye to produce 1/2 of the original kW and watt density (3-phase only).

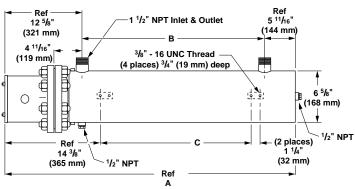
Circulation Heaters

3" 150 lb ANSI Flange—WATROD Element

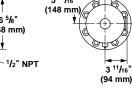
WATROD				Cod	e No.		Est.	Ship.
Description	kW	Fig. No.	240V~(ac) 1-Phase	240V~(ac) 3-Phase	480V~(ac) 1-Phase	480V~(ac) 3-Phase	We Ibs	ight (kg)
Applications	: Ligh	tweig	ht Oils, Degr	easing Soluti	ons, Heat Tra	nsfer Oils		(0)
23 W/in ²	3.0	3.1	CFMS718A10	CFMS718A3	CFMS718A11	CFMS718A5	68	(31)
Steel Tank	4.5	3.1	CFMS725J10	CFMS725J3	CFMS725J11	CFMS725J5	78	(36)
3-Steel	6.0	3.2	CFMS733A10	CFMS733A3	CFMS733A11	CFMS733A5	96	(44)
(3.6 W/cm ²)	7.5	3.3	CFMS740J10	CFMS740J3	CFMS740J11	CFMS740J5	100	(46)
	9.0	3.3	CFMS748A10	CFMS748A3	CFMS748A11	CFMS748A5	107	(49)
Applications	: Med	ium V	Veight Oils, H	eat Transfer (Oils, Lube Oil	s, Liquid Para	ffin	
16 W/in ² ③	2.0	3.1		CFMN718A12		CFMN718A13	68	(31)
Steel Tank	2.5	3.1		CFMN720J12		CFMN720J13	70	(32)
3-Incoloy®	3.0	3.2		CFMN725J12		CFMN725J13	78	(36)
(2.6 W/cm ²)	4.0	3.2		CFMN733A12		CFMN733A13	96	(44)
	5.0	3.3		CFMN740J12		CFMN740J13	100	(46)
	6.0	3.3		CFMN748A12		CFMN748A13	107	(49)
Applications	: Bun	ker C	and #6 Fuel	Oils				
8 W/in2③	2.0	3.2		CFMS733A12		CFMS733A13	96	(44)
Steel Tank	3.0	3.3		CFMS748A12		CFMS748A13	107	(49)
3-Steel								
(1.3 W/cm ²)								

All circulation heaters are Assembly Stock unless otherwise noted.

3 Must be operated 3-phase wye only.


Availability

Assembly Stock: Five to seven working days Standard: 10 working days


Truck Shipment only

Circulation Heaters

4" Flange

Fig. No.	A Dimension in (mm)	B Dimension in (mm)	C Dimension in (mm)
4.1	38 ¹⁵ / ₁₆ (989)	20½ (521)	17 (432)
4.2	49¾6 (1256)	31 (787)	27½ (699)
4.3	70 ⁷ /16 (1789)	52 (1321)	48½ (1232)
4.4	91 1/16 (2326)	73 (1854)	66 (1676)

5 ¹³/₁₆

4" 150 lb ANSI Flange-WATROD Element

WATROD				<u> </u>		Co	de No.	<u></u>			Est. Ship.
Description	kW	Fig. No.	240V~(ac) 1-Phase	No. of Circuits	240V~(ac) 3-Phase	No. of Circuits	480V∼(ac) 1-Phase	No. of Circuits	480V~(ac) 3-Phase	No. of Circuits	Weight Ibs (kg)
Application:	Clean	Wate	er								
60 W/in ²	12	4.1	CFOC715J10	2	CFOC715J3	1	CFOC715J11	1	CFOC715J5	1	124 (57)
Steel Tank	18	4.1	CFOC721J10	2	CFOC721J3	1	CFOC721J11	1	CFOC721J5	1	127 (58)
6-Copper	24	4.2	CFOC727A10	2	CFOC727A3	2	CFOC727A11	1	CFOC727A5	1	160 (73)
(9.3 W/cm ²)	30	4.2			CFOC732J3	2	CFOC732J11	2	CFOC732J5	1	163 (74
	36	4.3			CFOC738A3	2	CFOC738A11	2	CFOC738A5	1	229 (104
	50	4.3							CFOC751A5 ²	2	234 (107)
	60	4.4							CFOC760J5 ²	2	297 (135)
Application:	Deion	ized	Water, Demin	eralize	d Water					•	
60 W/in ²	12	4.1	CFOR716A10	1	CFOR716A3	1	CFOR716A11	1	CFOR716A5	1	124 (57)
316 SS Tank	18	4.1	CFOR722A10	2	CFOR722A3	1	CFOR722A11	1	CFOR722A5	1	127 (58
6-316 SS	24	4.2	CFOR727J10	2	CFOR727J3	2	CFOR727J11	1	CFOR727J5	1	160 (73)
(9.3 W/cm ²)	30	4.2			CFOR733A3	2	CFOR733A11	2	CFOR733A5	1	163 (74
Passivated	36	4.3			CFOR738J3	2	CFOR738J11	2	CFOR738J5	1	229 (104
	50	4.3							CFOR751J5	2	234 (106
	60	4.4							CFOR761A5	2	297 (135)
Application:	Proce	ss W	ater			'	,				
48 W/in ²	9	4.1	CFON713J10	1	CFON713J3	1	CFON713J11	1	CFON713J5	1	122 (56
Steel Tank	12	4.1	CFON718A10	2	CFON718A3	1	CFON718A11	1	CFON718A5	1	125 (57)
6-Incoloy®	15	4.1	CFON720J10	2	CFON720J3	1	CFON720J11	2	CFON720J5	1	127 (58
(7.5 W/cm ²)	18	4.1	CFON725J10	2	CFON725J3	1	CFON725J11	1	CFON725J5	1	160 (73)
	24	4.2	CFON733A10	2	CFON733A3	2	CFON733A11	1	CFON733A5	1	163 (74
	30	4.3			CFON740J3	2	CFON740J11	2	CFON740J5	1	229 (104
	36	4.3			CFON748A3	2	CFON748A11	2	CFON748A5	1	234 (107)

All circulation heaters are Assembly Stock unless otherwise noted. **Availability**

Assembly Stock: Five to seven working days Standard:10 working days

Truck Shipment only

② Standard

Circulation Heaters

4" 150 lb ANSI Flange—WATROD Element

WATROD						Co	ode No.				Est. Ship.
Description	kW	Fig. No.	240V∼(ac) 1-Phase	No. of Circuits	240V∼(ac) 3-Phase	No. of Circuits	480V~(ac) 1-Phase	No. of Circuits	480V∼(ac) 3-Phase	No. of Circuits	Weight lbs (kg)
Applications	: Forc	ed Ai	r and Gases,	Caust	ic Solutions,	Degre	asing Solutio	ons			
23 W/in256	6	4.1	CFONA18A10	1	CFONA18A3	1	CFONA18A11	1	CFONA18A5	1	125 (57)
Steel Tank	9	4.1	CFONA25J10	1	CFONA25J3	1	CFONA25J11	1	CFONA25J5	1	160 (73)
6-Incoloy®	12	4.2	CFONA33A10	2	CFONA33A3	1	CFONA33A11	1	CFONA33A5	1	163 (74)
(3.6 W/cm ²)	15	4.3	CFONA40J10	2	CFONA40J3	1	CFONA40J11	1	CFONA40J5	1	229 (104)
	18	4.3	CFONA48A10	2	CFONA48A3	1	CFONA48A11	1	CFONA48A5	1	234 (107)
	25	4.4			CFONA64J3	2	CFONA64J11	2	CFONA64J5	1	298 (136)
	30	4.4			CFONA77A3	2	CFONA77A11	2	CFONA77A5	1	306 (139)
Applications	: Ligh	tweig	ht Oils, Degr	easing	Solutions, F	leat Tra	ınsfer Oils				
23 W/in ²	6	4.1	CFOS718A10	1	CFOS718A3	1	CFOS718A11	1	CFOS718A5	1	125 (57)
Steel Tank	9	4.1	CFOS725J10	1	CFOS725J3	1	CFOS725J11	1	CFOS725J5	1	160 (73)
6-Steel	12	4.2	CFOS733A10	2	CFOS733A3	1	CFOS733A11	1	CFOS733A5	1	163 (74)
(3.6 W/cm ²)	15	4.3	CFOS740J10	2	CFOS740J3	1	CFOS740J11	1	CFOS740J5	1	229 (104)
	18	4.3	CFOS748A10	2	CFOS748A3	1	CFOS748A11	1	CFOS748A5	1	234 (107)
	25	4.4			CFOS764J3	2	CFOS764J11	2	CFOS764J5	1	298 (136)
	30	4.4			CFOS777A3	2	CFOS777A11	2	CFOS777A5	1	306 (139)
Applications	: Med	ium V	Veight Oils, H	eat Tra	ansfer Oils, L	iquid F	araffin				
16 W/in ² ③	3	4.1			CFON713J12	1			CFON713J13	1	122 (56)
Steel Tank	4	4.1			CFON718A12	1			CFON718A13	1	125 (57)
6-Incoloy®	5	4.1			CFON720J12	1			CFON720J13	1	127 (58)
(2.6 W/cm ²)	6	4.1			CFON725J12	1			CFON725J13	1	160 (73)
	8	4.2			CFON733A12	1			CFON733A13	1	163 (74)
	10	4.3			CFON740J12	2			CFON740J13	1	229 (104)
	12	4.3			CFON748A12	1			CFON748A13	1	234 (107)
Applications	: Bun	ker C	and #6 Fuel	Oils							
8 W/in ² ③	5	4.3			CFOS740J12	1			CFOS740J13	1	229 (104)
Steel Tank	6	4.3			CFOS748A12	1			CFOS748A13	1	234 (106)
6-Steel	8	4.4			CFOS764J12	1			CFOS764J13	1	298 (135)
(1.3 W/cm ²)	10	4.4			CFOS777A12	1			CFOS777A13	1	306 (139)

All circulation heaters are Assembly Stock unless otherwise noted.

Availability
Assembly Stock: Five to seven working days
Standard: 10 working days
Truck Shipment only

Must be operated 3-phase wye only.
 240V~(ac) can be wired wye and operated at 480V~(ac) 3-phase to produce ½ more kW and watt density.

® Can be wired wye to produce ½ of the original kW and watt density (3-phase only).

Circulation Heaters

4" 150 lb ANSI Flange—FIREBAR Element

FIREBAR			Code No.						
Description	kW	Fig.	240V~(ac)	No. of	480V~(ac)	No. of	Weight		
		No.	3-Phase	Circuits	3-Phase	Circuits	lbs (kg)		
Applications	: Proc	ess V	Vater, Ethyle	ne Gly	col (50%)				
45 W/in ²	12.0	4.1	CFONF13G27	1			125 (57)		
Steel Tank	15.0	4.1	CFONF16A27	1			128 (58)		
6-Incoloy®	18.0	4.1	CFONF18G27	1			130 (59)		
(7 W/cm ²)	24.0	4.1	CFONF22R27	2	CFONF22R28	1	133 (61)		
	30.0	4.2	CFONF27R27	2	CFONF27R28	1	168 (77)		
	36.0	4.2	CFONF32R27	2	CFONF32R28	1	170 (78)		
	48.0	4.3			CFONF42G28	2	236 (107)		
	60.0	4.3			CFONF51R28	2	240 (109)		
Applications	: Coo	king (Oils, Ethylen	e Glyc	ol (100%)				
30 W/in ²	10.0	4.1	CFONF16J12	1	CFONF16J13	1	128 (58)		
Steel Tank	13.0	4.1	CFONF19J12	1	CFONF19J13	1	130 (59)		
6-Incoloy®	17.0	4.1	CFONF24J12	1	CFONF24J13	1	133 (61)		
(4.7 W/cm ²)	21.0	4.2	CFONF30A12	2	CFONF30A13	1	168 (77)		
	25.5	4.2	CFONF35A12	2	CFONF35A13	1	170 (78)		
	34.0	4.3	CFONF45J12	2	CFONF45J13	1	236 (107)		
	43.0	4.3			CFONF56A13	2	240 (109)		
Applications	: Heat	Tran	sfer Oils, Miı	neral C	ils, Degreasi	ng Sol	utions		
23 W/in ² ④	7.5	4.1	CFONF16J20	1			128 (58)		
Steel Tank	10.0	4.1	CFONF19J20	1			130 (59)		
6-Incoloy®	12.8	4.1	CFONF24J20	1	CFONF24J19	1	133 (61)		
(3.6 W/cm ²)	15.8	4.2	CFONF30A20	1	CFONF30A19	1	168 (77)		
	19.0	4.2	CFONF35A20	1	CFONF35A19	1	170 (78)		
	25.0	4.3	CFONF45J20	2	CFONF45J19	1	236 (107)		
	32.3	4.3	CFONF56A20	2	CFONF56A19	1	240 (109)		
Applications	: Med	ium V	Veight Oils, I	leat Tr	ansfer Oils, L	ube O	ils, Liquid		
15 W/in ² ③	4.0	4.1	CFONF13G29	1			125 (57)		
Steel Tank	5.0	4.1	CFONF16A29	1			128 (58)		
6-Incoloy®	6.0	4.1	CFONF18G29	1			130 (59)		
(2.3 W/cm ²)	8.0	4.1	CFONF22R29	1	CFONF22R30	1	133 (61)		
	10.0	4.2	CFONF27R29	1	CFONF27R30	1	168 (77)		
	12.0	4.2	CFONF32R29	1	CFONF32R30	1	170 (78)		
	16.0	4.3	CFONF42G29	1	CFONF42G30	1	236 (107)		
				1		1	240 (109)		

All circulation heaters are Assembly Stock unless otherwise noted.

2.5

3.25

4.25

5.25

6.38

8.5

10.75

4.1

4.1

4.1

4.2

4.2

4.3

4.3

3 Must be operated 3-phase wye only.

128 (58)

130 (59)

170 (77)

236 (107)

240 (109)

133 (61)

168 (77)

1

1

1

Availability

8 W/in23

Steel Tank

6-Incoloy®

(1.3 W/cm²)

Assembly Stock: Five to seven working days

CFONF16J22

CFONF19J22

CFONF24J22

CFONF30A22

CFONF35A22

CFONF45J22

CFONF56A22

1

1

1

1

Standard: 10 working days
Truck Shipment only

CFONF24J21

CFONF30A21

CFONF35A21

CFONF45J21

CFONF56A21

Circulation Heaters

Fig. No. **A Dimension B** Dimension **E Dimension** 5"Flange in (mm) in (mm) in 30 5.1 49% (1249) (762)14% 5.2 56% (1427) 37 (940)18% 5.3 6711/16 (1719) 481/2 (1232)24 15/16 Ref — 12 ⁵/₈" (321 mm) 811/46 (2059) 5.4 61% (1572)30% 2" NPT Inlet & Outlet 6 ⁹/₁₆" (167 mm) 5.5 941/16 (2389) 74% (1902)37 15/16 В 4 11/16" ³/₈" - 16 UNC Thread — (4 places) ³/₄" (19 mm) deep (119 mm) 5 ⁹/₁₆" (141 mm)_/ A) A) 7 ⁵/8" [후 - 후] 0 1 / 78 (194 mm) 1/2" NPT 25" (635 mm) Ref 1 ¹/₄" (32 mm) (108 mm) Ε 1/2" NPT Ref

(mm)

(378)

(471)

(633)

(784)

(964)

5" 150 lb ANSI Flange-WATROD Element

WATROD						Co	de No.				Est.	Ship.
Description	kW	Fig. No.	240V~(ac) 1-Phase	No. of Circuits	240V~(ac) 3-Phase	No. of Circuits	480V∼(ac) 1-Phase	No. of Circuits	480V∼(ac) 3-Phase	No. of Circuits	We Ibs	ight (kg)
Application:	Clean	Wate	er									
60 W/in ²	24	5.1	CFNC727A10	3	CFNC727A3	2	CFNC727A11	3	CFNC727A5	1	140	(64)
Steel Tank	30	5.1			CFNC732J3	2	CFNC732J11	2	CFNC732J5	1	142	(65)
6-Copper	36	5.2			CFNC738A3	2	CFNC738A11	2	CFNC738A5	1	160	(73)
(9.3 W/cm ²)	50	5.3							CFNC751A5	2	180	(82)
	60	5.4							CFNC760J5 ²	2	190	(87)
60 W/in ²	36	5.1			CFNC727A3X	3	CFNC727A11X	3	CFNC727A5X	1	145	(66)
Steel Tank	45	5.1			CFNC732J3X	3	CFNC732J11X	3	CFNC732J5X	3	147	(67)
9-Copper	54	5.2			CFNC738A3X	3	CFNC738A11X	3	CFNC738A5X	3	166	(76)
(9.3 W/cm ²)	75	5.3							CFNC751A5X	3	188	(86)
	90	5.4							CFNC760J5X2	3	200	(91)
Application:	Proce	ss W	ater									
48 W/in ² ⑤	24	5.1	CFNN733A10	3	CFNN733A3	2	CFNN733A11	3	CFNN733A5	1	145	(66)
Steel Tank	30	5.2			CFNN740J3	2	CFNN740J11	2	CFNN740J5	1	167	(76)
6-Incoloy®	36	5.3			CFNN748A3	2	CFNN748A11	2	CFNN748A5	1	180	(82)
(7.5 W/cm ²)												
48 W/in ²	36	5.1			CFNN733A3X	3	CFNN733A11X	3	CFNN733A5X	1	150	(68)
Steel Tank	45	5.2			CFNN740J3X	3	CFNN740J11X	3	CFNN740J5X	3	173	(79)
9-Incoloy®	54	5.3			CFNN748A3X	3	CFNN748A11X	3	CFNN748A5X	3	188	(86)
(7.5 W/cm ²)												
	•	•						•		C	ONTIN	IUED

All circulation heaters are Assembly Stock unless otherwise noted.

Availability

Assembly Stock: Five to seven working days

Standard: 10 working days Truck Shipment only

② Standard

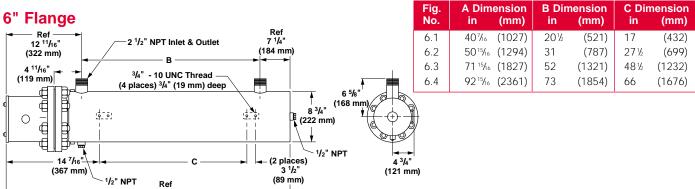
⑤ 240V~(ac) can be wired wye and operated at 480V~(ac) 3-phase to produce 1/2 more kW and watt density.

Circulation Heaters

5" 150 lb ANSI Flange—WATROD Element

WATROD						C	ode No.				Est. Ship
Description	kW	Fig. No.	240V~(ac) 1-Phase	No. of Circuits	240V~(ac) 3-Phase	No. of Circuits	480V∼(ac) 1-Phase	No. of Circuits	480V~(ac) 3-Phase	No. of Circuits	Weight
pplications	s: Ford	ed A	ir and Gases,	Causti	ic Solutions,	Degre	asing Solutio	ns			
23 W/in ² 56	9	5.1	CFNNA25J10	1	CFNNA25J3	1	CFNNA25J11	1	CFNNA25J5	1	140 (6
Steel Tank	12	5.2	CFNNA33A10	2	CFNNA33A3	1	CFNNA33A11	1	CFNNA33A5	1	145 (6
6-Incoloy®	15	5.2	CFNNA40J10	2	CFNNA40J3	1	CFNNA40J11	1	CFNNA40J5	1	167 (7
(3.6 W/cm ²)	18	5.3	CFNNA48A10	2	CFNNA48A3	1	CFNNA48A11	1	CFNNA48A5	1	180 (8
	25	5.4			CFNNA64J3	2	CFNNA64J11	2	CFNNA64J5	1	195 (8
	30	5.5			CFNNA77A3	2	CFNNA77A11	2	CFNNA77A5	1	220 (10
23 W/in ²	14	5.1	CFNNA25J10X	3	CFNNA25J3X	1	CFNNA25J11X	1	CFNNA25J5X	1	140 (6
Steel Tank	18	5.2	CFNNA33A10X	3	CFNNA33A3X	1	CFNNA33A11X	1	CFNNA33A5X	1	145 (6
9-Incoloy®	23	5.2	CFNNA40J10X	3	CFNNA40J3X	3	CFNNA40J11X	1	CFNNA40J5X	1	167 (7
(3.6 W/cm ²)	27	5.3	CFNNA48A10X	3	CFNNA48A3X	3	CFNNA48A11X	3	CFNNA48A5X	1	180 (8
,	38	5.4			CFNNA64J3X	3	CFNNA64J11X	3	CFNNA64J5X	1	195 (9
	45	5.5			CFNNA77A3X	3	CFNNA77A11X	3	CFNNA77A5X	3	220 (10
pplications	s: Ligh	tweig	ht Oils, Degr	easing	Solutions, H	leat Tra	nsfer Oils				
23 W/in ²	12	5.2	CFNS733A10	2	CFNS733A3	1	CFNS733A11	1	CFNS733A5	1	145 (6
Steel Tank	15	5.2	CFNS740J10	2	CFNS740J3	1	CFNS740J11	1	CFNS740J5	1	167 (7
6-Steel	18	5.3	CFNS748A10	2	CFNS748A3	3	CFNS748A11	1	CFNS748A5	1	180 (8
(3.6 W/cm ²)	25	5.4			CFNS764J3	2	CFNS764J11	2	CFNS764J5	1	195 (8
,	30	5.5			CFNS777A3	2	CFNS777A11	2	CFNS777A5	1	220 (10
23 W/in ²	18	5.2	CFNS733A10X	3	CFNS733A3X	1	CFNS733A11X	1	CFNS733A5X	1	150 (6
Steel Tank	23	5.2	CFNS740J10X	3	CFNS740J3X	3	CFNS740J11X	1	CFNS740J5X	1	173 (7
9-Steel	27	5.3	CFNS748A10X	3	CFNS748A3X	1	CFNS748A11X	3	CFNS748A5X	1	188 (8
(3.6 W/cm ²)	38	5.4			CFNS764J3X	3	CFNS764J11X	3	CFNS764J5X	1	206 (9
	45	5.5			CFNS777A3X	3	CFNS777A11X	3	CFNS777A5X	3	233 (10
Applications	s: Med	ium V	Veight Oils, H	eat Tra	nsfer Oils, L	iquid P	araffin				
16 W/in ² ③	8	5.1			CFNN733A12	1			CFNN733A13	1	145 (6
Steel Tank	10	5.2			CFNN740J12	1			CFNN740J13	1	167 (7
6-Incoloy®	12	5.3			CFNN748A12	1			CFNN748A13	1	180 (8
(2.6 W/cm ²)											
16 W/in ² ③	12	5.1			CFNN733A12X	1			CFNN733A13X	1	150 (6
Steel Tank	15	5.2			CFNN740J12X	1			CFNN740J13X	1	173 (7
9-Incoloy®	18	5.3			CFNN748A12X	1			CFNN748A13X	1	188 (8
(2.6 W/cm ²)											
pplications	s: Bun	ker C	and #6 Fuel	Oils							
8 W/in ² ③	5	5.2			CFNS740J12	1			CFNS740J13	1	167 (7
Steel Tank	6	5.3			CFNS748A12	1			CFNS748A13	1	180 (8
6-Steel	8	5.4			CFNS764J12	1			CFNS764J13	1	195 (8
(1.3 W/cm ²)	10	5.5			CFNS777A12	1			CFNS777A13	1	220 (10
8 W/in ² 3	7.5	5.2			CFNS740J12X	1			CFNS740J13X	1	173 (7
Steel Tank	9	5.3			CFNS748A12X	1			CFNS748A13X	1	188 (8
9-Steel	12	5.4			CFNS764J12X	1			CFNS764J13X	1	206 (9
(1.3 W/cm ²)	15	5.5			CFNS777A12X	1			CFNS777A13X	1	233 (10

All circulation heaters are Assembly Stock unless otherwise noted.


Availability

Assembly Stock: Five to seven working days Standard: 10 working days

Truck Shipment only

- ③ Must be operated 3-phase wye only.
 ⑤ 240V~(ac) can be wired wye and operated at 480V~(ac) 3-phase to produce ⅓ more kW and watt density.
- © Can be wired wye to produce ½ of the original kW and watt density (3-phase only).

Circulation Heaters

No.	in	(mm)	in	(mm)	in	(mm)
6.1	407/16	(1027)	20½	(521)	17	(432)
6.2	5015/16	(1294)	31	(787)	27½	(699)
6.3	71 ¹5¼6	(1827)	52	(1321)	48½	(1232)
6.4	92 ¹⁵ / ₁₆	(2361)	73	(1854)	66	(1676)

6" 150 lb ANSI Flange—WATROD Element

WATROD						Co	de No.				Est. Ship.
Description	kW	Fig. No.	240V~(ac) 1-Phase	No. of Circuits	240V~(ac) 3-Phase	No. of Circuits	480V∼(ac) 1-Phase	No. of Circuits	480V∼(ac) 3-Phase	No. of Circuits	Weight lbs (kg
pplication:	Clean	Wate	er								
60 W/in ²	24	6.1	CFPC715G10	3	CFPC715G3	2	CFPC715G11	2	CFPC715G5	1	212 (97
Steel Tank	36	6.1	CFPC721G10	4	CFPC721G3	2	CFPC721G11	2	CFPC721G5	1	217 (99
12-Copper	48	6.2			CFPC726R3	4	CFPC726R11	3	CFPC726R5	2	222 (101
(9.3 W/cm ²)	60	6.2			CFPC732G3	4	CFPC732G11	3	CFPC732G5	2	226 (103
	72	6.3			CFPC737R3	4			CFPC737R5	2	290 (132
	100	6.3							CFPC750R5	4	298 (136
	120	6.4							CFPC760G5	4	360 (164
60 W/in ²	30	6.1	CFPC715G10X	3	CFPC715G3X	5	CFPC715G11X	3	CFPC715G5X	1	215 (98
Steel Tank	45	6.1	CFPC721G10X	5	CFPC721G3X	5	CFPC721G11X	3	CFPC721G5X	5	223 (102
15-Copper	60	6.2			CFPC726R3X	5	CFPC726R11X	3	CFPC726R5X	5	226 (103
(9.3 W/cm ²)	75	6.2			CFPC732G3X	5	CFPC732G11X	5	CFPC732G5X	5	288 (131
	90	6.3			CFPC737R3X	5			CFPC737R5X	5	296 (134
	125	6.3							CFPC750R5X	5	306 (139
	150	6.4							CFPC760G5X ²	5	370 (168
Application:	Deion	ized	Water, Demin	eralize	d Water						
60 W/in²	24	6.1	CFPR715N10	3	CFPR715N3	2	CFPR715N11	2	CFPR715N5	1	212 (97
316 SS Tank	36	6.1	CFPR721N10	4	CFPR721N3	2	CFPR721N11	3	CFPR721N5	1	217 (99
12-316 SS	48	6.2			CFPR727E3	4	CFPR727E11	3	CFPR727E5	2	222 (101
(9.3 W/cm ²)	60	6.2			CFPR732N3	4	CFPR732N11	3	CFPR732N5	2	226 (103
Passivated	72	6.3			CFPR738E3	4			CFPR738E5	2	290 (132
	100	6.3							CFPR751E5	4	298 (136
	120	6.4							CFPR760N5	4	360 (164
60 W/in ²	30	6.1	CFPR715N10X	3	CFPR715N3X	5	CFPR715N11X	3	CFPR715N5X	1	215 (98
316 SS Tank	45	6.1	CFPR721N10X	5	CFPR721N3X	5	CFPR721N11X	3	CFPR721N5X	5	223 (102
15-316 SS	60	6.2			CFPR727E3X	5	CFPR727E11X	3	CFPR727E5X	5	226 (103
(9.3 W/cm ²)	75	6.2			CFPR732N3X	5	CFPR732N11X	5	CFPR732N5X	5	288 (131
Passivated	90	6.3			CFPR738E3X	5			CFPR738E5X	5	296 (135
	125	6.3							CFPR751E5X	5	306 (139
	150	6.4							CFPR760N5X	5	370 (168

CONTINUED

All circulation heaters are Assembly Stock unless otherwise noted.

② Standard

Availability

Assembly Stock: Five to seven working days

Standard: 10 working days Truck Shipment only

Circulation Heaters

6" 150 lb ANSI Flange—WATROD Element

WATROD						Co	ode No.				Est. Ship.
Description	kW	Fig.	240V~(ac)	No. of	240V~(ac)	No. of	480V~(ac)	No. of	480V~(ac)	No. of	Weight
		No.	1-Phase	Circuits	3-Phase	Circuits	1-Phase	Circuits	3-Phase	Circuits	lbs (kg
pplication:	Proce	ss W	ater								
48 W/in2⑤	18	6.1	CFPN713G10	2	CFPN713G3	1	CFPN713G11	1	CFPN713G5	1	212 (97
Steel Tank	24	6.1	CFPN717R10	3	CFPN717R3	2	CFPN717R11	2	CFPN717R5	1	214 (9 ⁻
12-Incoloy®	30	6.1	CFPN720G10	3	CFPN720G3	2	CFPN720G11	2	CFPN720G5	1	217 (99
(7.5 W/cm ²)	36	6.1	CFPN725G10	4	CFPN725G3	2	CFPN725G11	2	CFPN725G5	1	222 (10°
	48	6.2			CFPN732R3	4	CFPN732R11	3	CFPN732R5	2	226 (10
	60	6.3			CFPN740G3	4	CFPN740G11	3	CFPN740G5	2	290 (132
	72	6.3			CFPN747R3	4			CFPN747R5	2	298 (13
48 W/in ²	23	6.1	CFPN713G10X	3	CFPN713G3X	5	CFPN713G11X	1	CFPN713G5X	1	215 (98
Steel Tank	30	6.1	CFPN717R10X	3	CFPN717R3X	5	CFPN717R11X	3	CFPN717R5X	1	217 (99
15-Incoloy®	38	6.1	CFPN720G10X	5	CFPN720G3X	5	CFPN720G11X	3	CFPN720G5X	1	223 (102
(7.5 W/cm ²)	45	6.1	CFPN725G10X	5	CFPN725G3X	5	CFPN725G11X	3	CFPN725G5X	5	226 (10
	60	6.2			CFPN732R3X	5	CFPN732R11X	3	CFPN732R5X	5	288 (13 ⁻
	75	6.3			CFPN740G3X	5	CFPN740G11X	5	CFPN740G5X	5	296 (13
	90	6.3			CFPN747R3X	5			CFPN747R5X	5	306 (139
pplications	: Forc	ed Ai	r and Gases,	Causti	c Solutions,	Degre	asing Solutio	ns			
23 W/in ² 56	12	6.1	CFPNA17R10	2	CFPNA17R3	1	CFPNA17R11	1	CFPNA17R5	1	214 (97
Steel Tank	18	6.1	CFPNA25G10	2	CFPNA25G3	1	CFPNA25G11	1	CFPNA25G5	1	222 (101
12-Incoloy®	24	6.2	CFPNA32R10	3	CFPNA32R3	2	CFPNA32R11	2	CFPNA32R5	1	226 (103
(3.6 W/cm ²)	30	6.3	CFPNA40G10	3	CFPNA40G3	2	CFPNA40G11	2	CFPNA40G5	1	290 (132
	36	6.3	CFPNA47R10	4	CFPNA47R3	2	CFPNA47R11	2	CFPNA47R5	1	298 (136
	50	6.4			CFPNA64G3	4	CFPNA64G11	3	CFPNA64G5	2	360 (164
	60	6.4			CFPNA76R3	4	CFPNA76R11	3	CFPNA76R5	2	368 (167
23 W/in ²	15	6.1	CFPNA17R10X	3	CFPNA17R3X	1	CFPNA17R11X	1	CFPNA17R5X	1	217 (99
Steel Tank	23	6.1	CFPNA25G10X	3	CFPNA25G3X	5	CFPNA25G11X	1	CFPNA25G5X	1	226 (103
15-Incoloy®	30	6.2	CFPNA32R10X	3	CFPNA32R3X	5	CFPNA32R11X	3	CFPNA32R5X	1	288 (131
(3.6 W/cm ²)	38	6.3	CFPNA40G10X	5	CFPNA40G3X	5	CFPNA40G11X	3	CFPNA40G5X	1	296 (135
	45	6.3	CFPNA47R10X	5	CFPNA47R3X	5	CFPNA47R11X	3	CFPNA47R5X	5	306 (139
	63	6.4			CFPNA64G3X	5	CFPNA64G11X	3	CFPNA64G5X	5	370 (168
	75	6.4			CFPNA76R3X	5	CFPNA76R11X	5	CFPNA76R5X	5	381 (173

All circulation heaters are Assembly Stock unless otherwise noted.

Availability

Assembly Stock: Five to seven working days
Standard: 10 working days
Truck Shipment only

⑤ 240V~(ac) can be wired wye and operated at 480V~(ac) 3-phase to

© Can be wired wye to produce ½ of the original kW and watt density (3-phase only).

CONTINUED

Circulation Heaters

6" 150 lb ANSI Flange—WATROD Element

WATROD						Co	de No.	<u> </u>			Est. Ship.
Description	kW	Fig.	240V~(ac)	No. of	240V~(ac)	No. of	480V∼(ac)	No. of	480V~(ac)	No. of	Weight
		No.	1-Phase	Circuits	3-Phase	Circuits	1-Phase	Circuits	3-Phase	Circuits	lbs (kg
pplications	: Light	weig	ht Oils, Degre	easing	Solutions, H	eat Tra	nsfer Oils				
23 W/in²	12	6.1	CFPS717R10	2	CFPS717R3	1	CFPS717R11	1	CFPS717R5	1	214 (97
Steel Tank	18	6.1	CFPS725G10	2	CFPS725G3	1	CFPS725G11	1	CFPS725G5	1	222 (101
12-Steel	24	6.2	CFPS732R10	3	CFPS732R3	2	CFPS732R11	2	CFPS732R5	1	226 (103
(3.6 W/cm ²)	30	6.3	CFPS740G10	3	CFPS740G3	2	CFPS740G11	2	CFPS740G5	1	290 (132
	36	6.3	CFPS747R10	4	CFPS747R3	2	CFPS747R11	2	CFPS747R5	1	298 (136
	50	6.4			CFPS764G3	4	CFPS764G11	3	CFPS764G5	2	360 (164
	60	6.4			CFPS776R3	4	CFPS776R11	3	CFPS776R5	2	368 (167
23 W/in ²	15	6.1	CFPS717R10X	3	CFPS717R3X	1	CFPS717R11X	1	CFPS717R5X	1	217 (99
Steel Tank	23	6.1	CFPS725G10X	3	CFPS725G3X	5	CFPS725G11X	1	CFPS725G5X	1	226 (103
15-Steel	30	6.2	CFPS732R10X	3	CFPS732R3X	5	CFPS732R11X	3	CFPS732R5X	1	288 (131
(3.6 W/cm ²)	38	6.3	CFPS740G10X	5	CFPS740G3X	5	CFPS740G11X	3	CFPS740G5X	1	296 (135
	45	6.3	CFPS747R10X	5	CFPS747R3X	5	CFPS747R11X	3	CFPS747R5X	5	306 (139
	63	6.4			CFPS764G3X	5	CFPS764G11X	3	CFPS764G5X	5	370 (168
	75	6.4			CFPS776R3X	5	CFPS776R11X	5	CFPS776R5X	5	381 (173
pplications	Medi	um W	eight Oils, He	eat Tra	nsfer Oils. Li	auid P	araffin				
16 W/in2③	6	6.1	 ,		CFPN713G12	1			CEDN742C42	1	212 (97
Steel Tank	8	6.1			CFPN713G12 CFPN717R12	1 1			CFPN713G13 CFPN717R13	1 1	212 (97)
12-Incoloy®	10	6.1			CFPN720G12	1 1			CFPN720G13	'	217 (99
(2.6 W/cm ²)	12	6.1			CFPN725G12	1 1			CFPN725G13	'1	222 (101
(=== ,	16	6.2			CFPN732R12	1			CFPN732R13	1	226 (103
	20	6.3			CFPN740G12	2			CFPN740G13	'	290 (103
	24	6.3			CFPN747R12	2			CFPN747R13	'	298 (136
16 W/in2③	7.5	6.1			CFPN713G12X	1			CFPN713G13X	1	215 (98
Steel Tank	10	6.1			CFPN717R12X	1 1			CFPN717R13X	'	213 (98
15-Incoloy®	12.5	6.1			CFPN720G12X	1 1			CFPN720G13X	'	223 (102
(2.6 W/cm ²)	15	6.1			CFPN725G12X	1			CFPN725G13X	'	226 (102
,	20	6.2			CFPN732R12X	5			CFPN732R13X	1	288 (131
	25	6.3			CFPN740G12X	5			CFPN740G13X	'	296 (135
	30	6.3			CFPN747R12X	5			CFPN747R13X	1 1	306 (139
nnlications			and #6 Fuel ()ile							(51
•			and #0 Fuel (JII3							
8 W/in ² ③	8	6.2			CFPS732R12	1			CFPS732R13	1	226 (103
Steel Tank	10	6.3			CFPS740G12	1			CFPS740G13	1	290 (132
12-Steel (1.3 W/cm ²)	12	6.3			CFPS747R12 CFPS764G12	1 1			CFPS747R13 CFPS764G13	1 1	298 (136 360 (164
(1.3 44/6/11/2)	16.5 20	6.4 6.4			GFF3704G12	'			CFPS764G13	1 1	368 (167
0 14/# 2®					05007000407					- '-	
8 W/in ² ③ Steel Tenk	10	6.2			CFPS732R12X	1			CFPS732R13X	1	288 (131
Steel Tank 15-Steel	12.5 15	6.3			CFPS740G12X CFPS747R12X	1			CFPS740G13X CFPS747R13X	1 1	296 (135 306 (139
(1.3 W/cm ²)	21	6.3 6.4			CFPS747R12X	1 5			CFPS747R13X	1 1	306 (139 370 (168
					OI F 37 04 G 12A	1 ()		1	OI F 37 04 G 13 A		

All circulation heaters are Assembly Stock unless otherwise noted. **Availability**

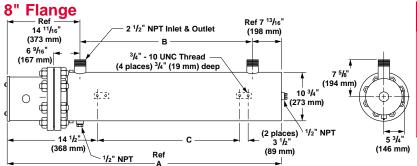
Assembly Stock: Five to seven working days Standard: 10 working days

Truck Shipment only

³ Must be operated 3-phase wye only.

Circulation Heaters

6" 150 lb ANSI Flange—FIREBAR Element


FIREBAR				Code	No.		Est. Ship.		
Description	kW	Fig. No.	240V~(ac) 3-Phase	No. of Circuits	480V∼(ac) 3-Phase	No. of Circuits	Weight Ibs (kg)		
pplications	: Proc	ess V	Vater, Ethyle	ne Gly	col (50%)				
45 W/in²	30	6.1	CFPNF13G27	5	, ,		217 (99)		
Steel Tank	37.5	6.1	CFPNF16A27	5			220 (100)		
15-Incoloy®	45	6.1	CFPNF18G27	5			223 (102)		
(7 W/cm ²)	60	6.1	CFPNF22R27	5	CFPNF22R28	5	226 (103)		
(,	75	6.2	CFPNF27R27	5	CFPNF27R28	5	232 (106)		
	90	6.2	CFPNF27R27	5	CFPNF32R28	5 5	232 (100)		
	120	6.3	CFFNF32R21	5	CFPNF42G28	5	304 (138)		
	150	6.3			CFPNF51R28	5 5	314 (143)		
						0	314 (143)		
• •			Oils, Ethylen		ol (100%)				
30 W/in2③	25	6.1	CFPNF16J12	5	CFPNF16J13	5	220 (100)		
Steel Tank	32	6.1	CFPNF19J12	5	CFPNF19J13	5	223 (102)		
15-Incoloy®	42	6.1	CFPNF24J12	5	CFPNF24J13	5	226 (103)		
(4.7 W/cm ²)	52	6.2	CFPNF30A12	5	CFPNF30A13	5	232 (106)		
	64	6.2	CFPNF35A12	5	CFPNF35A13	5	236 (107)		
	85	6.3	CFPNF45J12	5	CFPNF45J13	5	304 (138)		
	110	6.3			CFPNF56A13	5	314 (143)		
pplications	: Heat	Tran	sfer Oils. Mir	neral O	il, Degreasin	a Solu	tions		
23 W/in ² 4	19	6.1	CFPNF16J20	5	, _ 0 9. 0 0	9	220 (100)		
Steel Tank	24	6.1	CFPNF19J20	5			223 (100)		
15-Incoloy®	32	6.1	CFPNF24J20	5	CFPNF24J19	5	226 (102)		
(3.6 W/cm ²)	40	6.2	CFPNF30A20	5	CFPNF30A19	5	232 (106)		
(3.0 11/0111)				-		-			
	48	6.2	CFPNF35A20	5	CFPNF35A19	5	236 (107)		
	64	6.3	CFPNF45J20	5	CFPNF45J19	5	304 (138)		
	80	6.3	CFPNF56A20	5	CFPNF56A19	5	314 (143)		
• •					ansfer Oils, L	.ube Oi	-		
15 W/in ² ③	10	6.1	CFPNF13G29	5			217 (99)		
Steel Tank	12.5	6.1	CFPNF16A29	5			220 (100)		
15-Incoloy®	15	6.1	CFPNF18G29	5			223 (102)		
(2.3 W/cm ²)	20	6.1	CFPNF22R29	5	CFPNF22R30	5	226 (103)		
	25	6.2	CFPNF27R29	5	CFPNF27R30	5	232 (106)		
	30	6.2	CFPNF32R29	5	CFPNF32R30	5	236 (107)		
	40	6.3	CFPNF42G29	5	CFPNF42G30	5	304 (138)		
	50	6.3	CFPNF51R29	5	CFPNF51R30	5	314 (143)		
Applications	: Bun	ker C	and #6 Fuel	Oils, A	sphalt				
8 W/in ² ③	6.3	6.1	CFPNF16J22	5	-		220 (100)		
Steel Tank	8.1	6.1	CFPNF19J22	5			223 (100)		
15-Incoloy®	10.6	6.1	CFPNF24J22	5	CFPNF24J21	5	226 (102)		
(1.3 W/cm ²)	13.1	6.2	CFPNF30A22	5	CFPNF30A21	5	232 (106)		
(1.5 **/CIII-)									
	16	6.2	CFPNF35A22	5	CFPNF35A21	5	236 (107)		
	21.3	6.3	CFPNF45J22	5	CFPNF45J21	5	304 (138)		
	26	6.3	CFPNF56A22	5	CFPNF56A21	5	314 (143)		

All circulation heaters are Assembly Stock unless otherwise noted.

3 Must be operated 3-phase wye only. Wired for higher voltage.

Availability
Assembly Stock: Five to seven working days
Truck Shipment only

Circulation Heaters

Fig. No.	A Dimension in (mm)	B Dimension in (mm)	C Dimension in (mm)
7.1	47¾6 (1199)	24 ¹¹ / ₁₆ (627)	21¾ (538)
7.2	55¾ (1402)	3211/16 (830)	29¾6 (741)
7.3	62¾6 (1580)	3911/16 (1008)	36¾ (919)
7.4	69 ¹³ / ₁₆ (1773)	47% (1202)	4313/16 (1113)
7.5	79¾ (2014)	56 ¹³ / ₁₆ (1443)	53% (1354)
7.6	885/16 (2243)	6513/16 (1672)	62% (1583)
7.7	985/16 (2497)	7513/16 (1926)	72% (1837)

8" 150 lb ANSI Flange— WATROD Element

MAINOD				Odd No.								
Description	kW	Fig. No.	240V∼(ac) 1-Phase	No. of Circuits	240V~(ac) 3-Phase	No. of Circuits	480V~(ac) 1-Phase	No. of Circuits	480V~(ac) 3-Phase	No. of Circuits		eight (kg)
Application: Clean Water												
60 W/in ²	50	7.1			CFRC721N32	3	CFRC721N11	3	CFRC721N5	2	340	(155)
Steel Tank	75	7.2			CFRC729N3②	6			CFRC729N52	2	360	(164)
18-Copper	100	7.3			CFRC737E3②	6			CFRC737E5	3	385	(175)
(9.3 W/cm ²)	125	7.4			CFRC745E3②	6			CFRC745E5 ²	3	410	(186)
	150	7.5							CFRC752N52	6	440	(200)
	175	7.6							CFRC760N52	6	465	(211)
	200	7.7							CFRC768E5②	6	510	(232)

Application: Process Water

48 W/in ² ⑤	50	7.2		CFRN725N32	3	CFRN725N112	3	CFRN725N5②	2	350 (159)
Steel Tank	75	7.3		CFRN735N3 ²	6			CFRN735N5 ²	2	380 (173)
18-Incoloy®	100	7.4		CFRN744E3	6			CFRN744E5	3	410 (186)
(7.5 W/cm ²)	125	7.5		CFRN754M3 ²	6			CFRN754M5 ²	6	445 (202)
	150	7.6						CFRN763M5@	6	490 (223)
	175	7.7						CFRN773D5	6	530 (241)
	200	7.7						CFRN782M5 ²	6	560 (254)
48 W/in ²	67	7.2		CFRN726D3X2	4	CFRN726D11X2	3	CFRN726D5X2	2	358 (163)
Steel Tank	100	7.3		CFRN736D3X2	8			CFRN736D5X2	4	392 (178)
24-Incoloy®	133	7.4		CFRN744M3X2	8			CFRN744M5X2	4	425 (193)
(7.5 W/cm ²)	167	7.5		CFRN754M3X2	8			CFRN754M5X2	8	463 (210)
	200	7.6						CFRN763M5X2	8	511 (232)
	233	7.7						CFRN773D5X	8	554 (252)
	267	7.7						CFRN782M5X2	8	587 (267)

Applications: Forced Air and Gases, Caustic Solutions, Degreasing Solutions

					,	3	asing oblation	. •			
23 W/in256	30	7.2	CFRNA32N102	3	CFRNA32N32	2	CFRNA32N112	2	CFRNA32N5②	1	370 (168)
Steel Tank	40	7.3			CFRNA43E3②	3	CFRNA43E112	2	CFRNA43E5©	2	410 (186)
18-Incoloy®	50	7.4			CFRNA51M3 ²	3	CFRNA51M11	3	CFRNA51M5	2	440 (200)
(3.6 W/cm ²)											
23 W/in ²	40	7.2	CFRNA33D10X2	4	CFRNA33D3X2	4	CFRNA33D11X2	2	CFRNA33D5X2	2	382 (174)
Steel Tank	53	7.3			CFRNA43M3X2	4	CFRNA43M11X2	3	CFRNA43M5X2	2	425 (193)
24-Incoloy®	67	7.4			CFRNA51M3X2	4	CFRNA51M11X2	3	CFRNA51M5X2	2	457 (207)
(3.6 W/cm ²)											
(0.0 11/0)											

CONTINUED

All circulation heaters are Assembly Stock unless otherwise noted.

Availability

Assembly Stock: Five to seven working days **Standard:** 10 working days

Truck Shipment only

② Standard

§ 240V~(ac) can be wired wye and operated at 480V~(ac) 3-phase to produce ½ more kW and watt density. ® Can be wired wye to produce ½ of the original kW and watt density (3-phase only).

Circulation Heaters

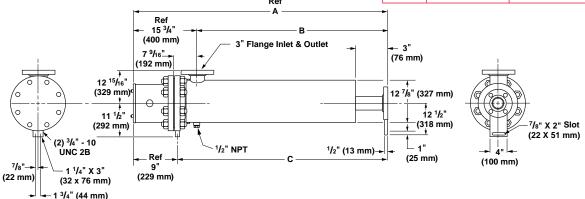
8" 150 lb ANSI Flange—WATROD Element

WATROD						Со	de No.				Est.	Ship.
Description	kW	Fig. No.	240V~(ac) 1-Phase	No. of Circuits	240V∼(ac) 3-Phase	No. of Circuits	480V~(ac) 1-Phase	No. of Circuits	480V∼(ac) 3-Phase	No. of Circuits	We Ibs	ight (kg)
Applications	s: Ligh	tweig	ght Oils, Degr	easing	Solutions, H	eat Tra	ınsfer Oils					
23 W/in ²	30.0	7.2	CFRS732N102	3	CFRS732N3②	2	CFRS732N11@	2	CFRS732N5@	1	370	(168
Steel Tank	40.0	7.3			CFRS743E3②	3	CFRS743E11@	2	CFRS743E5	2	410	(186
18-Steel	50.0	7.4			CFRS751M3	3	CFRS751M11	3	CFRS751M5	2	440	(200
(3.6 W/cm ²)	60.0	7.5			CFRS762D3②	6	CFRS762D112	3	CFRS762D5 ²	2	480	(21
	70.0	7.6			CFRS770M32	6	CFRS770M11	6	CFRS770M5	2	530	(24
	80.0	7.7			CFRS779M32	6			CFRS779M5 ²	3	610	(27
23 W/in ²	40.0	7.2	CFRS733D10X2	4	CFRS733D3X2	4	CFRS733D11X2	2	CFRS733D5X2	2	382	(17
Steel Tank	53.0	7.3			CFRS743M3X2	4	CFRS743M11X2	3	CFRS743M5X2	2	425	(19
24-Steel	67.0	7.4			CFRS751M3X2	4	CFRS751M11X2	3	CFRS751M5X2	2	457	(20
(3.6 W/cm ²)	80.0	7.5			CFRS762D3X2	8	CFRS762D11X2	4	CFRS762D5X2	4	461	(20
	93.0	7.6			CFRS770M3X2	8	CFRS770M11X2	6	CFRS770M5X2	4	554	(25
	107.0	7.7			CFRS779M3X2	8			CFRS779M5X2	4	636	(28
Applications	: Mediu	ım W	eight Oils, Hea	at Trans	fer Oils, Liqui	d Para	ffin					
16 W/in ² ③	17.0	7.2			CFRN725N122	1			CFRN725N132	1	350	(15
Steel Tank	25.0	7.3			CFRN735N122	2			CFRN735N132	1	380	(17
18-Incoloy®	33.0	7.4			CFRN744E122	2			CFRN744E13	1	410	(18
(2.6 W/cm ²)	42.0	7.5			CFRN754M122	3			CFRN754M13@	2	445	(20
	50.0	7.6							CFRN763M132	2	490	(22
	58.0	7.7							CFRN773D13	2	530	(24
	67.0	7.7							CFRN782M132	2	560	(25
16 W/in ²	23.0	7.2			CFRN726D12X2	2			CFRN726D13X@	1	358	(16
Steel Tank	33.0	7.3			CFRN736D12X@	2			CFRN736D13X@	1	392	(17
24-Incoloy®	44.0	7.4			CFRN744M12X@	4			CFRN744M13X@	2	425	(19
(2.6 W/cm ²)	56.0	7.5			CFRN754M12X@	4			CFRN754M13X	2	463	(21
	67.0	7.6							CFRN763M13X2	2	511	(23
	77.0	7.7							CFRN773D13X2	2	554	(25:
	89.0	7.7							CFRN782M13X2	4	587	(26
Applications	: Bunk	er C a	and #6 Fuel Oi	ls								
8 W/in ² ③	12.5	7.3			CFRS743E122	1			CFRS743E132	1	410	(18
Steel Tank	16.5	7.4			CFRS751M12	1			CFRS751M13	1	440	(20
18-Steel	20.0	7.5			CFRS762D122	2			CFRS762D132	1	480	(21
(1.3 W/cm ²)	24.0	7.6			CFRS770M12	2			CFRS770M13	1	530	(24
	27.0	7.7			CFRS779M122	2			CFRS779M132	1	610	(27
8 W/in ² ③	17.0	7.3			CFRS743M12X2	1			CFRS743M13X@	1	425	(19
Steel Tank	22.0	7.4			CFRS751M12X2	2			CFRS751M13X@	1	457	(20
24-Steel	27.0	7.5			CFRS762D12X2	2			CFRS762D13X@	1	461	(20
(1.3 W/cm ²)	32.0	7.6			CFRS770M12X2	2			CFRS770M13X2	1	554	(25
	36.0	7.7			CFRS779M12X2	2			CFRS779M13X2) 1	636	(28

All circulation heaters are Assembly Stock All circulation heaters are Assembly Stock unless otherwise noted.

Availability

Assembly Stock: Five to seven working days


Standard: 10 working days

Truck Shipment only ② Standard

3 Must be operated 3-phase wye only.

Circulation Heaters

Fig. No.			B Dim in	nension (mm)	C Din	nension (mm)	
8.1	76% (194	5)	6013/16	(1545)	67%	(1716)	
8.2	841/16 (213!	5)	685/16	(1735)	75 ¹ /1 ₆	(1907)	
8.3	913/6 (2316	5)	75 7/16	(1916)	823/16	(2088)	
8.4	991/16 (2510	5)	835/16	(2116)	901/16	(2288)	
8.5	106% (270	7)	$90^{13}/_{16}$	(2307)	97%	(2478)	
	8.1 8.2 8.3 8.4	No. in (mm) 8.1 76% (1945) 8.2 84% (2135) 8.3 91% (2316) 8.4 99% (2516)	No. in (mm) 8.1 76% (1945) 8.2 84% (2135) 8.3 91% (2316) 8.4 99% (2516)	No. in (mm) in 8.1 76% (1945) 60% 8.2 84% (2135) 68% 8.3 91% (2316) 75% 8.4 99% (2516) 83%	No. in (mm) in (mm) 8.1 76% (1945) 60½ (1545) 8.2 84½ (2135) 68½ (1735) 8.3 91¾ (2316) 75½ (1916) 8.4 99½ (2516) 83½ (2116)	No. in (mm) in (mm) in 8.1 76% (1945) 60³% (1545) 67% 8.2 84% (2135) 68% (1735) 75% 8.3 91% (2316) 75% (1916) 82% 8.4 99% (2516) 83% (2116) 90%	No. in (mm) in (mm) in (mm) 8.1 76% (1945) 601% (1545) 67% (1716) 8.2 84% (2135) 68% (1735) 75% (1907) 8.3 91% (2316) 75% (1916) 82% (2088) 8.4 99% (2516) 83% (2116) 90% (2288)

10" 150 lb ANSI Flange—WATROD Element

WATROD				Code No.					
Description	kW	Fig.	240V~(ac)	No. of	480V∼(ac)	No. of	Weight		
		No.	3-Phase	Circuits	3-Phase	Circuits	lbs (kg		
Application:	Proce	ss W	ater						
48 W/in ² ⑤	262	8.5			CFSN773E5	9	600 (27	3)	
Steel Tank									
27-Incoloy®									
(7.5 W/cm ²)									
Applications	: Forc	ed Ai	ir and Gases	, Caus	tic Solutions	, Degre	asing S	olution	
23 W/in ² 56	60	8.1	CFSNA43N32	3	CFSNA43N5②	3	515 (23	4)	
Steel Tank	75	8.2	CFSNA51N32	9	CFSNA51N5	3	530 (24	1)	

Applications: Lightweight Oils, Degreasing Solutions, Heat Transfer Oils

23 W/in ²	90	8.3		CFSS762E5②	3	540	(245)
Steel Tank	105	8.4		CFSS770N5	3	600	(272)
27-Steel	120	8.5		CFSS778N52	3	645	(293)
(3.6 W/cm ²)							

Applications: Medium Weight Oils, Heat Transfer Oils, Liquid Paraffin

16 W/in2③	75	8.3		CFSN763N132	3	540	(245)
Steel Tank	87	8.5		CFSN773E132	3	600	(273)
27-Incoloy®							
(2.6 W/cm ²)							

Applications: Bunker C and #6 Fuel Oils

8 W/in ² ③	30	8.3	CFSS762E122	3	CFSS762E13@	1	540 (245)
Steel Tank	35	8.4	CFSS770N12	3	CFSS770N13	1	600 (273)
27-Steel	40	8.5	CFSS778N122	3	CFSS778N132	1	645 (293)
(1.3 W/cm ²)							

All circulation heaters are Assembly Stock unless otherwise noted.

Availability

Assembly Stock: Five to seven working days Standard: 10 working days

Truck Shipment only

- ② Standard
- 3 Must be operated 3-phase wye only.
- § 240V~(ac) can be wired wye and operated at 480V~(ac) 3-phase to produce ½ more kW and watt density.
- ® Can be wired wye to produce ½ of the original kW and watt density (3-phase only).

27-Incoloy® (3.6 W/cm²)

Circulation Heaters

12" Flange

Fig. No.	A Dim in	ension (mm)	B Dimen in (ı		C Dime	ension (mm)
9.1	761/%	(1953)	6011/16 (1	1541)	67 ¹³ / ₁₆	(1722)
9.2	84¾	(2143)	68³¼6 (1	1732)	75⅓6	(1913)
9.3	91 %	(2334)	75 ¹¹ /1 ₆ (1	1922)	82 13/16	(2103)
9.4	99	(2515)	82 13/16 (2	2103)	8915/16	(2284)
9.5	106½	(2705)	905/6 (2	2294)	97 1/16	(2475)

12" 150 lb ANSI Flange—WATROD Element

Es	Est. Ship.		
	Weight Ibs (kg)		
	o. of cuits I		

Application: Process Water

Applications: Forced Air and Gases, Caustic Solutions, Degreasing Solutions

23 W/in ²	80	9.1		CFTNA43L52	3	565 (25
Steel Tank	100	9.2		CFTNA51L5	3	585 (26
36-Incoloy®						
(3.6 W/cm ²)						

Applications: Lightweight Oils, Degreasing Solutions, Heat Transfer Oils

23 W/in ²	140	9.4		CFTS770L5	4	Γ	650
Steel Tank	160	9.5		CFTS778L5@	4		700
Steel							
(3.6 W/cm ²)							

Applications: Medium Weight Oils, Heat Transfer Oils, Liquid Paraffin

16 W/in2③	117	9.5		CFTN773C132	3	650 (29
Steel Tank						
36-Incoloy®						
(2.6 W/cm ²)						

Applications: Bunker C and #6 Fuel Oils

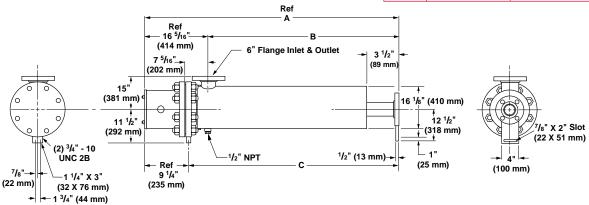
47	9.4	CFTS770L122	3	CFTS770L13	2	700 (318)
54	9.5	CFTS778L122	3	CFTS778L132	2	750 (341)
	''				2 2 2 2 2	

All circulation heaters are Assembly Stock unless otherwise noted.

Availability

Assembly Stock: Five to seven working days **Standard:** 10 working days

Truck Shipment only


- ② Standard
- 3 Must be operated 3-phase wye only.

Circulation Heaters

14" Flange

45-Incoloy® (7.5 W/cm²)

Fig. No.	A Dim	A Dimension in (mm) B Dimension in (mm)				C Dimension in (mm)		
10.1	75¾	(1924)	597/16	(1510)	66½	(1689)		
10.2	831/4	(2115)	66 ¹⁵ /16	(1700)	74	(1880)		
10.3	90¾	(2305)	74 ⁷ /16	(1891)	81½	(2070)		
10.4	98¼	(2496)	81 15/16	(2081)	89	(2261)		
10.5	105¾	(2686)	89 1/16	(2272)	96½	(2451)		

14" 150 lb ANSI Flange—WATROD Element

WATROD			Code No.					Ship.				
Description	kW	Fig.	240V~(ac)			No. of	We	ight				
		No.	3-Phase	Circuits	3-Phase	Circuits	lbs	(kg)				
Application: Process Water												
48 W/in ²	315	10.2			CFWN754J5②	15	600	(273)				
Steel Tank	375	10.3			CFWN763J52	15	650	(295)				

Applications: Forced Air and Gases, Caustic Solutions, Degreasing Solutions

/in²	100	10.1		CFWNA43J52	;	3	3 570	3 570	3 570 (2	3 570 (25	3 570 (259	3 570 (259)	3 570 (259)
Steel Tank	125	10.2		CFWNA51J5	5		590	590	590 (2	590 (26	590 (268	590 (268)	590 (268)
-Incoloy®													
(3.6 W/cm ²)													

Applications: Lightweight Oils, Degreasing Solutions, Heat Transfer Oils

23 W/in ²	150	10.3		CFWS762A52	5	650	(295)
Steel Tank	175	10.4		CFWS770J5	5	700	(318)
45-Steel	200	10.5		CFWS778J52	5	780	(354)
(3.6 W/cm ²)							

Applications: Medium Weight Oils, Heat Transfer Oils, Liquid Paraffin

Applications: Bunker C and #6 Fuel Oils

8 W/in ² ③	60	10.4	CFWS770J122	3	CFWS770J13	3	700	(318)
Steel Tank	67	10.5	CFWS778J122	5	CFWS778J132	3	780	(354)
45-Steel								
(1.3 W/cm ²)								

All circulation heaters are Assembly Stock unless otherwise noted.

Availability

Assembly Stock: Five to seven working days Standard: 10 working days

Truck Shipment only

② Standard

3 Must be operated 3-phase wye only.

Circulation Heaters

Build-a-Code

Circulation Heater Base Code Number –

General purpose (NEMA 1) terminal enclosure standard

Optional Terminal Enclosure Type

S = General purpose with thermostat (NEMA 1)

W = Moisture resistant (NEMA 4)E = Explosion resistant (NEMA 7)

E/W = Explosion/moisture resistant (NEMA 7/4)

Optional Thermostat^① or Thermocouple^②

- ① Thermostat code numbers shown on page 425. Check sensing bulb O.D. against thermowell I.D. to assure proper fit. For side-mount thermostats, also assure adequate capillary tube length.
- ② Specify Type J or K thermocouple. If overtemp thermocouple specify orientation horizontal, vertical up or vertical down.

How to Order

To order a stock circulation heater, please specify:

- · Watlow code number
- Volts/watts
- Phase
- · Flange or screw plug size
- Tank material
- Options
- Quantity

If the circulation heater is to be configured with options, add the suffix letter(s) to the circulation heater base code number, as indicated on the Build-a-Code chart.

If stock units do not meet your application needs, Watlow can provide **made-to-order** heaters. Please provide:

- Application (including vessel orientation)
- Volts/watts
- Phase
- · Number of circuits
- Watt density
- Sheath material and number of heating elements
- Flange or screw plug size
- Tank material
- Inlet and outlet mating type and size
- · Centerline of inlet and outlet
- Terminal enclosure type
- Options
- Quantity

Availability

Assembly Stock: Five to seven working days

F.O.B.: Hannibal, Missouri

Modified Stock®: Five-10 working

davs

Standard: 10 working days

Made-to-Order: Six to eight weeks

Options, complexity and quantity may affect availability and lead times. Consult factory.

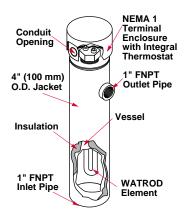
Replacement Heater Assemblies Only

Replacement heater assemblies available by ordering circulation heater code number and specifying "replacement heater only."

2 Assembly Stock units with catalog options.

Circulation Heaters

Booster Heaters


Booster Heaters

Booster heaters are ideal for circulating applications requiring less kilowatts, including engine preheating.

Booster heaters are made from a steel or brass 1¼" NPT screw plug heater and insulated pressure vessel with 1" FNPT inlet and outlet. This assembly also contains an integral thermostat.

Performance Capabilities

- Watt densities to 60 W/in² (9.3 W/cm²)
- · Wattages to 3kW
- Voltages to 480V~(ac)
- Steel sheath temperatures to 750°F (400°C)
- Copper sheath temperatures to 350°F (175°C)

Features and Benefits

- Dual voltages simplify stocking and wiring.
- Carbon steel, standard pipe wall vessel is compatible with many applications.
- One inch thick (25 mm) fiberglass thermal insulation, rated to 750°F (400°C), reduces heat loss.
- Steel jacket (shroud) is fully welded and painted to protect thermal insulation.

- Inlet and outlet nozzle connections are one inch FNPT fittings welded to the vessel.
- General purpose (NEMA 1) terminal enclosure protects terminals and thermostat.
- Integral thermostat controls process temperatures from:
 60° to 160°F (15° to 70°C) on copper sheath elements

175° to 550°F (80° to 290°C) on steel sheath elements

Applications

- Stand by generators
- Peak power trimming generators
- Mobile generator sets
- · Earth-moving equipment
- Water heaters
- Lightweight oils

Options

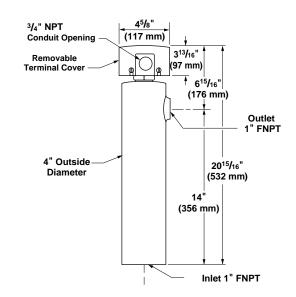
Terminal Enclosure

General purpose (NEMA 1) terminal enclosures with integral thermostats are supplied on all Watlow booster heaters. Optional moisture resistant (NEMA 4) terminal enclosures protect wiring and thermostat from liquid contaminants. To order, add the suffix letter **W** to the booster heater base code number.

For explosion resistant (NEMA 7) and explosion/moisture resistant (NEMA 7/4) terminal enclosures, see **Screw Plug Immersion Heaters**, pages 322 to 324.

Circulation Heaters Booster Heaters

Description			Code No.		t. Ship. eight						
	kW	Phase	120/240V~(ac)	lbs	(kg)						
Application	Application: Aqueous Solutions										
60 W/in ²	1.5	1	CBEC8G6	18	(8.2)						
Brass Plug	2.0	1	CBEC10F6	18	(8.2)						
2-Copper	2.5	1	CBEC12F6	18	(8.2)						
(9.3 W/cm ²)	3.0	1	CBEC15A6X	18	(8.2)						
Application	Lightv	veight C	Dils								
22 M/in2	0.5	1	CDESTOR	10	(0.2)						


23 W/in ²	0.5	1	CBES7G6	18	(8.2)
Steel Plug	0.75	1	CBES10B6	18	(8.2)
2- Steel	1.0	1	CBES12P6	18	(8.2)
(3.6 W/cm ²)					

All units are Assembly Stock

For optional housing adders use circulation heater adders.

Availability

Assembly Stock: Five to seven days

How to Order

To order a booster heater, please specify:

- Watlow code number
- Volts/watts
- **Options**
- Quantity

If the booster heater requires an optional NEMA 4 terminal enclosure, add the suffix letter W to the base code number.

If our Assembly Stock units do not meet your application needs, Watlow can provide a made-to-order unit. For made-to-order units, consult your Watlow representative and provide the following information:

- Application
- Volts/watts
- Watt density
- Phase
- Terminal enclosure type
- **Options**
- Quantity

Availability

Assembly Stock: Five to seven

F.O.B.: Hannibal, Missouri

working days

Modified Stock¹: Five to seven

working days

Made-to-Order: Six to eight weeks Options, complexity and quantity may affect availability and lead times. Consult factory.

① Assembly Stock units with catalog options.

Circulation Heaters Engine Preheaters

Watlow engine preheaters help maintain a desired minimum engine temperature to make starting fast and easy. Also reduces engine wear caused by cold engine starting.

Engine preheaters mount conveniently on an engine or rail. The internal thermostat constantly adjusts to ambient temperature changes to keep engine coolant warm at all times.

An internal tank temperature sensor protects Watlow engine preheaters from dry fire conditions caused by low coolant levels or blocked flow. Installation is easy with just two mounting bolts, and inlet and outlet hose connections.

Performance Capabilities

- Watt densities from 45 to 90 W/in² (7 to 14 W/cm²)
- · Up to 6 kW
- UL® and CSA component recognition to 480V~(ac) and 600V~(ac) respectively.
- Thermostatically controlled from 60 to 160°F (15 to 70°C)
- Incoloy® sheath temperatures to 1600°F (870°C)

Features and Benefits

- Incoloy® sheath minimizes the risk of premature failure in the event of a dry-fire condition.
- Integral, prewired adjustable thermostat, mounted in a general purpose (NEMA 1) terminal enclosure provides a ready-toinstall unit.
- Easy installation with standard, one inch (25 mm) diameter beaded inlet and outlet nozzles. Rubber hose connections eliminate the need for threaded fittings and adapters.
- 120/240V~(ac) or 240/480V~(ac) dual voltages make field wiring flexible. Minimizes stocking multiple voltages.
- Mounting bracket isolates harmful engine vibration.
- Heavy-duty welded carbon steel tank resists corrosion and extends life.
- Optional oil pressure interconnect switch disrupts power during engine operation.

- Integral check valve assures proper coolant flow and correct thermostat operation. Check valve will not interfere with adequate thermo-siphoning.
- UL® and CSA component recognition under file numbers E52951 and 31388 respectively.
 See pages 268 to 271 for details.

Applications

- Standby generators
- Primary power generators
- Firepump engines

Options

Terminal Enclosures

The following terminal enclosures are available:

- Standard, general purpose (NEMA 1)
- Moisture resistant (NEMA 4)
- Explosion resistant (NEMA 7) class 1, groups C and D.
 For class 1, group B enclosures, consult your Watlow representative.

Order by adding the suffix letter **W** (NEMA 4) or **E** (NEMA 7) to the engine preheater base code number.

Threaded Nozzles

Carbon steel threaded inlets and outlets are available for installations using rigid piping or threaded adapters. Threaded nozzles are

typically supplied for firepump applications. To order, specify **threaded nozzles** and **NPT size**.

Circulation Heaters

Engine Preheaters

Application Hints

- Mount engine preheaters in horizontal position only (as shown in Figures #1, #2 and #3). Consult your Watlow representative if vertical mounting is unavoidable.
- Mount the heater near or below the lowest point on the engine block. Keep outlet nozzle pointed up, as indicated on the tank.
- Estimate kilowatt requirements with the following formula. First determine the engine displacement, then multiply:

English

Cubic inches X 3 = estimated wattage

Metric

Liters X 183 = estimated wattage

F.O.B.: Hannibal, Missouri

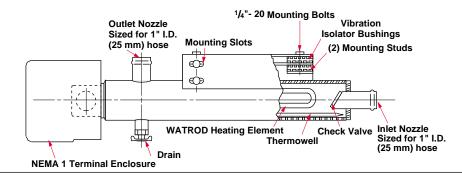
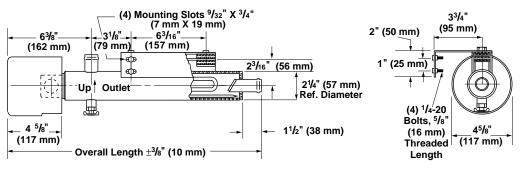
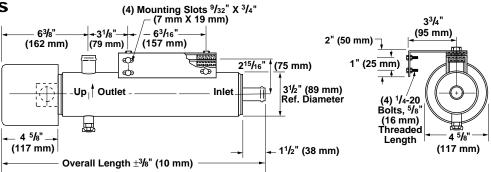



Figure 1

	kW Length Inch (mm)		Code No.				Est. Ship.		
kW			120/240V~(ac) 1-Phase	208V~(ac) 1-Phase	240/480V~(ac) 1-Phase	We Ibs	ight (kg)		
Application: Ethylene Glycol/Engine Coolant									
1.13	20%	(530)		CPBPL2S12①		12	(6)		
1.50	201/8	(530)	CPBPB6S12	CPBPB2S12①		12	(6)		
1.69	20%	(530)		CPBPM2S12®		12	(6)		
1.88	20%	(530)		CPBPN2S12①		12	(6)		
2.00	20%	(530)	CPBPC6S12			12	(6)		
2.25	201/8	(530)	CPBPD6S12			12	(6)		
2.25	2611/16	(678)		CPBPD2S12①		15	(7)		
2.50	201/8	(530)	CPBPE6S12			12	(6)		
3.00	26 ¹¹ / ₁₆	(678)		CPBPF2S12①	CPBPF7S12	15	(7)		
3.75	2611/16	(678)		CPBPG2S12①		15	(7)		
4.00	2611/16	(678)			CPBPH7S12	15	(7)		
5.00	26 ¹¹ / ₁₆	(678)			CPBPJ7S12①	15	(7)		

All preheaters are Stock unless otherwise noted.

Availability


Stock: Same day shipment **Standard:** Four weeks

① Standard

Circulation Heaters

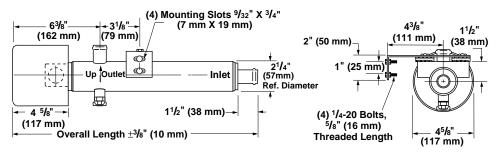

Engine Preheaters

Figure 2

	Overall kW Length Inch (mm)		Code	Est. Ship.					
kW			277V~(ac) 480V~(ac) 1-Phase 3-Phase		Weight Ibs (kg)				
Applic	Application: Ethylene Glycol/Engine Coolant								
1.5	201/⁄8	(530)	CPCPB4S12 ^①	CPCPB13S12 ^①	12	(6)			
2.0	20%	(530)	CPCPC4S12 ^①	CPCPC13S12 ^①	12	(6)			
2.5	20%	(530)	CPCPE4S12 ^①	CPCPE13S12®	12	(6)			
3.75	201/8	(530)	CPCPG4S12 ^①	CPCPG13S12 ^①	12	(6)			
4.0	20%	(530)	CPCPH4S12 ^①	CPCPH13S12	12	(6)			
5.0	20%	(530)	CPCPJ4S12 ^①	CPCPJ13S12	12	(6)			

Figure 3

kW	Overall Length Inch (mm)		Code No. 120/240V~(ac) 208V~(ac) 1-Phase 1-Phase		Est. Ship. Weight Ibs (kg)				
Application: Ethylene Glycol/Engine Coolant									
0.75	15%	(397)		CPBPK2S12 ^①	9	(4)			
1.0	15%	(397)	CPBPA6S12 ^①		9	(4)			

All preheaters are stock unless otherwise noted.

F.O.B.: Hannibal, Missouri

Availability

Stock: Same day shipment **Standard:** Four weeks ① Standard

How to Order

To order a Stock, or Standard engine preheater, please specify:

- Code number
- Volts/watts
- Phase
- Options
- Quantity

If our Stock units do not meet your application needs, Watlow will

provide a made-to-order unit. For **made-to-order** units, provide the following information:

- Volts/watts
- Phase
- Inlet and outlet type and size
- Terminal enclosure type
- Mounting orientation
- · Options
- Quantity

Availability

Stock: Same day shipment

Modified Stock: Five to seven

working days

Standard: Four weeks

Made-to-Order: Six to eight weeks

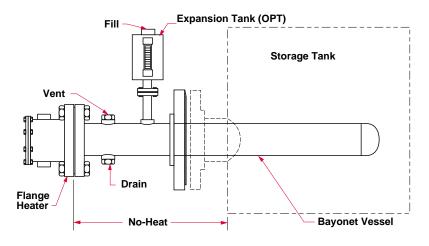
Options, complexity and quantity may affect availability and lead

times. Consult factory.

② Stock units with catalog options.

Circulation Heaters Pipe Insert Heaters

Pipe insert immersion heaters permit removing and servicing the heater bundle without draining the liquid being heated.


Heating is accomplished by mounting a flange or screw plug immersion heater inside a pressure-tight bayonet pipe vessel. The pipe vessel then mates to a flange connection on a storage tank's side. Heat transfer between element(s) and tank contents is accomplished by heating the air or heat transfer fluid inside the bayonet pipe for conduction to the tank's contents.

Performance Capabilities

- · Wattages to 100kW
- Voltages to 600V~(ac)
- Ratings to 600 lb pressure class
- Incoloy® sheath temperatures to 1400°F (760°C)
- Stainless steel sheath temperatures to 1200°F (650°C)
- Steel sheath temperatures to 750°F (400°C)

Features and Benefits

 Low watt density screw plug or flange heaters, mounted in the bayonet vessel, provide long life.

- Carbon steel, 304 and 316 stainless steel bayonet vessels offer compatibility with a wide range of liquids.
- Welded flange on pipe vessel ensures pressure seal.
- Heating element support(s)
 ensure proper element spacing
 and maximum heater
 performance.
- Heat transfer fluid fill/drain and vent couplings ease installation and maintenance.

Applications

- Indirect heating of viscous fluids:
 - **Asphalt**
 - Tar
 - Molasses
 - Syrup
 - Glue
- · Corrosive liquids
- · Degreasing fluids

Options

Pipe insert heaters can be supplied with a variety of options, including:

- Appropriate gasket materials
- Passivation cleaning on pipe insert
- European screw plug to flange adapters
- · CSA certified terminal enclosures
- Stand-off terminal enclosures
- Thermocouple temperature sensors
- Thermostats
- Customer specified materials, sizes and pressure class ratings

For descriptions and ordering information about these options, please refer to *Flange Immersion Heaters*, pages 340 to 343, or *Screw Plug Immersion Heaters*, pages 322 to 326.

Flanges

Flanges to 24 inches nominal pipe size are available in materials compatible with specific application needs. For information on flange materials and ratings, consult your Watlow representative.

Circulation Heaters Pipe Insert Heaters

Bayonet Vessels

Bayonet vessels are available up to 14 inches nominal pipe size and 20 feet long. Vessel size is dependent upon the kW requirement and element watt density. For more information, please consult your Watlow representative.

F.O.B.: Hannibal, Missouri

Application Hints

- Mount pipe insert heater horizontally.
- Locate pipe insert heaters low in the tank, but above the sludge level
- Consider a low liquid level sensor to protect against low liquid level conditions.
- Select the proper heat transfer media (air or fluid) to adequately
- conduct heat from the elements to the bayonet vessel. Consult your Watlow representative for recommendations.
- Select a watt density that's compatible with the heat transfer media being used.
- Use a sheath high-limit sensing device inside the bayonet vessel to protect against element over-heating.
- For pipe insert heater assemblies employing heat transfer fluid, use an expansion tank. This will allow for fluid expansion and contraction during heater cycling.
- Insulate the pipe insert heater's exterior to minimize heat loss.

Caution:

Do not insulate the terminal enclosure.

How to Order

All pipe insert heaters are **made-to-order**. To order, please specify:

- Application
- Volts/watts
- Phase
- Number of circuits
- Bayonet vessel material
- Storage tank mating flange size

- Maximum bayonet length beyond the storage tank mating flange
- Dimension from heater flange to inside of storage tank wall
- Terminal enclosure type
- Options
- Quantity

Availability

Made-to-Order: Six to eight weeks Options, complexity and quantity may affect availability and lead times. Consult factory.

Quick Ship

- On stock chart units:
- Five to seven days on all heaters
- 10 working days on special voltages and/or wattages
- 15 working days on special element lengths

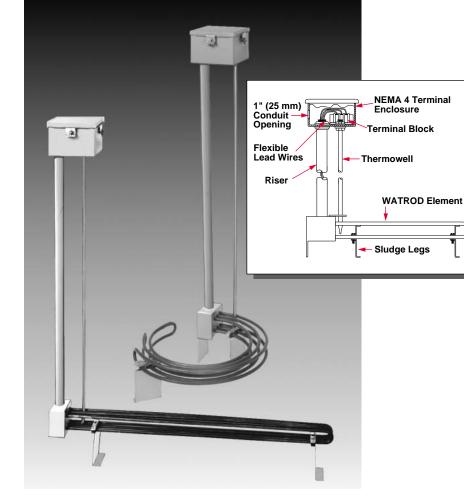
Tubular and Process Assemblies

Over-the-Side Heaters

To provide portability, easy installation and removal, Watlow makes Over-the-Side heaters in three versions:

- "L" and "O" shaped
- Vertical loop
- Drum

These "installed-from-the-top" heaters slide easily into tanks, with the heated portion immersed along the side or at the bottom.


Over-the-Side heaters are ideal for heating water, oils, solvents, salts and acids. Application versatility is enhanced with optional sheath materials, kilowatt ratings, terminal enclosures and mounting methods.

"L" and "O" Shaped Performance Capabilities

- Incoloy® sheath element watt densities to 60 W/in² (9.3 W/cm²)
- Steel sheath element watt densities to 23 W/in² (3.6 W/cm²)
- Wattages to 50kW
- Voltages to 600V~(ac)

Features and Benefits

- Rugged, light-weight construction resists damage during installation or removal.
- Three 0.475 inch (12 mm) diameter WATROD heating elements offer one- or threephase operation.
- WATROD hairpins are repressed (recompacted) after bending to assure MgO density, dielectric strength, heat transfer and life.
- Four inch (100 mm) sludge legs keep heating elements off the tank's bottom to help avoid being covered with sediment.
- RTV riser seal prevents moisture from infiltrating electrical areas.

- Standard size one inch conduit openings facilitate wiring.
- rated to 390°F (200°C), allow factory or field wiring for three or one phase operation.
- Riser materials are compatible with element sheath materials:
 Stainless steel with Incoloy® sheath
 Steel with steel sheath
 All other wetted parts are stainless steel.
- Integral thermowells provide convenient temperature sensor insertion and replacement without draining the fluid being heated.

- Moisture resistant (NEMA 4) enclosures standard.
- UL® and CSA component recognition to 480V~(ac) and 600V~(ac) under file numbers E52951 and 31388 respectively.

Applications

- Water heating
- Freeze protection
- · Viscous oils
- Storage tanks
- Degreasing tanks
- Solvents
- Salts
- · Caustic solutions
- Paraffin

Incoloy® is a registered trademark of Special Metals Corporation.

UL® is a registered trademark of Underwriter's Laboratories, Inc.

Over-the-Side Heaters L and O Shaped Options

Caution

Explosion-resistant terminal enclosures are intended to provide explosion containment in the electrical termination/wiring enclosure only. No portion of the assembly outside of this enclosure is covered under this rating. Rating effectiveness may be compromised by abuse or misapplication.

Terminal Enclosures

Moisture resistant (NEMA 4) terminal enclosures, without thermostats, are standard on all Watlow "L" and "O" shaped Over-the-Side heaters.

Optional terminal enclosures meet application requirements with:

- Corrosion resistant (NEMA 4X).
 Available with or without a single or double pole thermostat.
- Explosion resistant (NEMA 7)
 class 1 groups C and D. Available
 with or without a single or double
 pole thermostat. For class 1,
 group B enclosures, consult your
 Watlow representative.
- Explosion/moisture resistant

(NEMA 7/4) combinations. Available with or without a single or double pole thermostat.

Terminal enclosures without thermostats may be ordered by specifying the appropriate suffix code:

E for explosion resistant (NEMA 7)

E/W for explosion/moisture resistant (NEMA 7/4).

No suffix code is needed for corrosion resistant (NEMA 4X); simply specify terminal enclosure and rating.

To order a thermostat with a terminal enclosure, add the code number to the Over-the-Side heater base code number.

Thermostats

Optional single and double pole thermostats are also available separately.

For details on thermostats, see *Thermostats*, pages 423 to 425.

Thermocouples

ASTM Type J or K thermocouples offer more accurate sensing of process and/or sheath temperatures. A thermocouple may be inserted into the thermowell or attached to the heater's sheath.

Thermocouples are supplied with 120 inch (3050 mm) leads (longer lead lengths available). Unless otherwise specified, thermocouples are supplied with temperature ranges detailed on the *Thermocouple Types* chart.

Thermocouples require an appropriate temperature and power control. These must be purchased separately. Watlow offers a wide variety of temperature and power controls to meet virtually all applications. Temperature controls can be configured to accept process variable inputs, too. Consult your Watlow representative for details.

To order, specify **Type J** or **K** thermocouple, **lead length**, and indicate if it is for measuring **process** temperature or as a **high-limit** sensing device.

Type J and Type K thermocouples are rated 32 to 1382°F and 32 to 2282°F (0-750°C and 0-1250°C), respectively. Watlow does not recommend exceeding temperature ranges shown on this chart for the tubular product line.

Alumel® and Chromel® are registered trademarks of the Hoskins Manufacturing Company.

Thermocouple Types

ASTM Type	Conductor Ch	naracteristics Negative	Recommended [⊕] Temperature Range °F (°C)		
J	Iron	Constantan	0 to 1000	(-20 to 540)	
K	(Magnetic) Chromel®	(Non-magnetic) Alumel®	0 to 2000	(-20 to 1100)	
	(Non-magnetic)	(Magnetic)			

Over-the-Side Heaters L and O Shaped Options

Continued

Wattages and Voltages

Watlow routinely supplies Over-the-Side heaters with 240 to 480V~(ac) as well as wattages from three to 18 kilowatts. If required, Watlow can configure heaters with voltages and wattages outside these parameters. For more information about this option, consult your Watlow representative.

Multiple Elements

Over-the-Side immersion heaters are configured with three WATROD heating elements.

To achieve a specific kilowatt rating, Watlow can configure units with up

to 18 heating elements.

To order, specify multiple elements, the number of elements, volts, watts, phase and maximum bundle height and width.

Sheath Material

Stock "O" and "L" shaped Over-the-Side heaters come with Incoloy® or steel sheaths. 304 or 316 stainless steel and titanium sheaths are available upon request.

To order, specify the **sheath material**.

Passivation

During the manufacturing process, particles of iron or tool steel may become embedded in the stainless steel or alloy sheath. If not removed, these particles may corrode,

produce rust spots and/or contaminate the process.

For critical applications, passivation will remove free iron from the sheath and other wetted surfaces.

To order, specify **passivation**.

Riser

A stainless steel or steel riser is supplied to keep terminal enclosures out of the heated solution. Stock heights are 39% or 51% inches (1000 or 1320 mm). Upon request, riser height up to 60 feet (18.3 m) can be provided.

To order, specify **riser material** and and **height**.

Right Angle Riser

Riser may be right angle formed to move the terminal enclosure away from over the tank.

To order, specify **right angle riser** and **dimensions**.

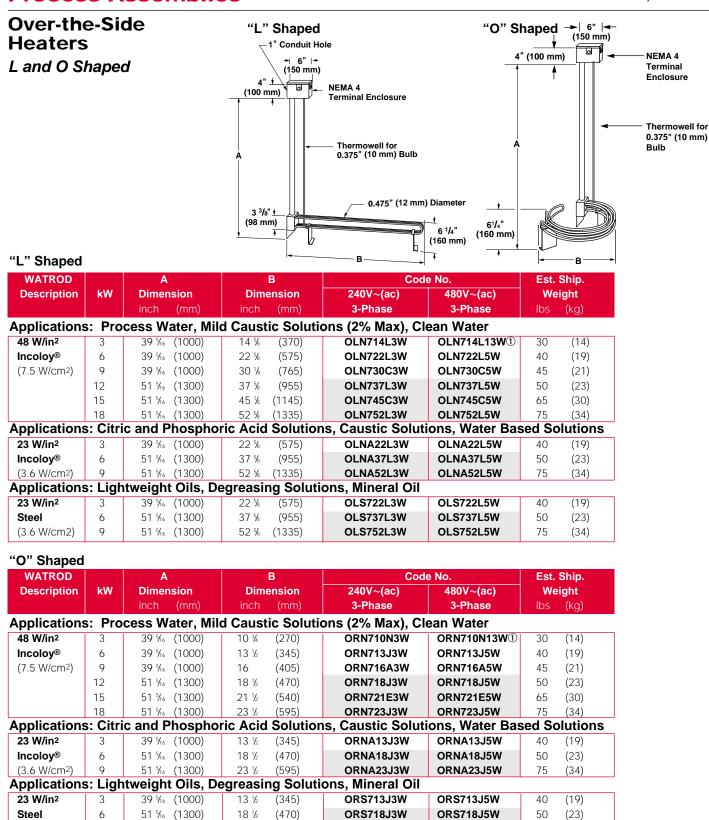
Sludge Legs

Four inch (100 mm) sludge legs are supplied on all stock units to keep elements above sediments. Shorter

or longer sludge legs are available upon request.

To order, specify **sludge legs** and **height**.

Man Hole Cover


A man hole cover seals the tank and provides heater mounting.

Man hole covers are pre-assembled to the riser. Standard man hole

covers are made from steel with other materials available upon request.

To order, specify man hole construction, diameter and material.

F.O.B.: Hannibal, Missouri

All units are Assembly Stock.

Availability

(3.6 W/cm²)

Assembly Stock: Five to seven working days

51 % (1300)

9

(595)

23 1/2

ORS723J3W

ORS723J5W

75

(34)

Truck Shipment only

Must be operated 3-phase only.

Over-the-Side

Tubular and Process Assemblies

Over-th	e-Side
Heater	S

L and	0	Shaped
-------	---	--------

Base Code Number-

Includes moisture resistant (NEMA 4) terminal enclosure without thermostat

Enclosure with Thermostat

See chart below for order code suffix

			Ma	x. A	C	ode No. Suff	ix
Thermostat	Tem °F	Temperature °F (°C)		Dimension inch (mm)		Explosion Resistant	Exp./Moist. Resistant
Single Pole Single Throw (SPST) ^①	30-250 175-550 300-700	(0-120) (80-290) (150-350)	84 84 60	(2135) (2135) (1525)	2A 3A 10	E2A E3A E10	E/W2A E/W3A E/W10
Double Pole Single Throw (DPST) ②	60-250 60-250 100-550 100-550	(15-120) (15-120) (40-290) (40-290) (40-290)	52 52 60 52 52	(1320) (1320) (1525) (1320) (1320)	5 5A 6 7 7A	E5 E5A E6 E7 E7A	E/W5 E/W5A E/W6 E/W7
On-Off Manual Reset (DPST)	60-250 100-550	(15-120) (40-290)	55 60	(1395) (1525)	8 9	E8 E9	E/W8 E/W9

[®] SPST thermostats require an electrical contactor if operated at 480V~(ac); at 240V~(ac) over 22 amps; or wired three phase.

How to Order

To order a stock unit, please specify:

- · Watlow code number
- Volts/watts
- Phase
- Options
- Quantity

If our stock units do not meet your application needs, Watlow will provide **made-to-order** units. Consult your Watlow representative and provide the following information:

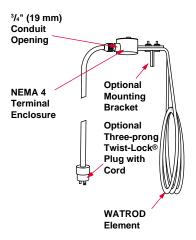
- Application
- Volts/watts
- Phase
- Number of circuits
- Watt density
- Number of heating elements and sheath material
- 'A' dimension
- 'B' dimension
- Options, including terminal enclosure type
- Quantity

Availability

Assembly Stock: Five to seven working days

F.O.B.: Hannibal, Missouri

Modified Stock ③: Five to seven working days


Made-to-Order: Five to seven weeks Options, complexity and quantity may affect availability and lead times. Consult factory.

③ Assembly Stock units with catalog options.

② DPST thermostats require an electrical contactor if operated at 480V~(ac) over 21 amps; at 240V~(ac) over 30 amps; or wired three phase wye.

Over-the-Side Heaters

Vertical Loop Heater

These light-weight, thin-profile vertical loop heaters are well suited for open tank applications.

A WATROD tubular element, formed into spiral loops, hugs the tank wall to maximize tank work space.

Available with four different sheath materials, vertical loop heaters come

with options to meet application requirements.

Versatility is further enhanced with optional three-prong, Twist-Lock® plug and adjustable mounting brackets.

Performance Capabilities

- Incoloy® sheath watt densities to 60 W/in² (9.3 W/cm²)
- Titanium sheath watt densities to 45 W/in² (7 W/cm²)
- Steel sheath watt densities to 23 W/in² (3.5 W/cm²)
- · Wattages to 9kW
- Voltages to 600V~(ac)

Features and Benefits

- WATROD element is filled with compacted MgO insulation to maximize dielectric strength, heat transfer and life.
- Long no-heat ends form the heater's riser. No-heat ends leave only the element's looped portion submerged and heated. These are also formed into a right angle to move the terminal enclosure away from over the tank.

- Moisture resistant (NEMA 4) terminal enclosure offers easy access to terminal wiring.
- Terminal enclosure materials depend on element sheath material. These include:

Cast iron	Incoloy®
	Steel
	316 stainless steel
PVC	Titanium

- Conduit openings accept ¾ inch conduit fittings to facilitate wiring.
- Screw lug terminals accept customer supplied ring-type wire terminals.
- Ground terminals are supplied to facilitate equipment grounding.

Applications

- Water heating
- Lightweight oils
- · Salt baths
- Mild acid baths
- Cleaning solutions
- · Plating solutions

Options

Three-prong, Twist-Lock® Plug

An optional flexible cord, with threeprong, Twist-lock® plug, provides easy connection to standard 220V~(ac) outlets. The 70 inch (1780 mm) cord is rubber insulated to resist oil, ozone, grease, chemicals, acids, solvents, weather and temperature extremes to 195°F (90°C).

To order, add the suffix letter **C** to the heater's base code number.

Wattages and Voltages

Watlow supplies stock vertical loop heaters as 240V~(ac), with wattages from five to eight kilowatts. To meet specific application needs, Watlow

can configure heaters with voltages and wattages outside these parameters.

For more information about this option, consult your Watlow representative.

Passivation

During the manufacturing process, particles of iron or tool steel may become embedded in the stainless steel or alloy sheath. If not removed, these particles may corrode,

produce rust spots and/or contaminate the process.

For critical applications, passivation will remove free iron from the sheath.

To order, specify passivation.

Twist-Lock® is a registered trademark of Hubbell Incorporated.

Over-the-Side Heaters

Vertical Loop Heater **Options**

Continued

Application Hints

 Determine recommended sheath material and watt density by using the **Supplemental** Applications Chart on pages 263 to 266. If unable to determine the appropriate sheath material and watt density for the fluid being heated, consult your Watlow representative.

Adjustable Mounting Brackets

To accommodate varying tank wall thicknesses, optional stainless steel mounting brackets adjust from 0 to 4¾ inches (0 to 120 mm).

To order, add suffix letter **B** to the vertical loop heater base code number.

F.O.B.: Hannibal, Missouri

- Ensure conduit openings and fittings are compatible with the environment around the heater enclosure.
- Use optional mounting brackets to position the heating element so there is ample space between the tank wall and the heating element.
- Ensure the liquid level stays above the heater's looped section. If not submerged, it will overheat or create a hazardous situation.
- Remove the heater periodically to inspect and clean the element. This maintenance procedure will prolong the heater's life.

(150 mm) 3/4" NPT 26"±3/4" (660 mm ± 19mm) 15 3/4" (400 mm) 147/s Ref. 0.475 (390 mm) Heated (12 mm) Section

(50 mm)

Vertical Loop Heaters

	WATROD		Code No.	Est.	Ship.
	Description	kW	240V~(ac)	We	eight
Applications			1-Phase	lbs	(kg)
Conventional Plating Baths Such as Copper Plating, Cyanide Type; Tin Plating, Alkaline Stannate Type; Brass and Bronze; Nickel, Chrome, Gold and Silver Plating and Iron Chromide. Nitrites, Permanganates, Persulfates and Dichromates.	43 W/in ² Titanium (6.7 W/cm ²)	8	VLT10W8 ®	28	(13)
Water Heating and Mild Acids	40 W/in ² Incoloy® (6.2 W/cm ²)	8	VLN10W8	28	(13)
Mild Acid Baths	40 W/in² 316 SS (6.2 W/cm²)	8	VLR10W8	28	(13)
Alkaline Solutions Which Do Not Contain Fluorides, Fluoroborates or Fluorosilicates, Pyrophosphate Copper, Ferric Chloride, Iron Chloride; Bright Dips and Pickles Containing Nitric, Phosphoric, and Chromic Acids	27 W/in² Titanium (4.2 W/cm²)	5	VLT10W5 ®	28	(13)
Water Heating, Corrosive Liquids and Salt Baths	23 W/in ² Incoloy® (3.6 W/cm ²)	5	VLN10W5	26	(12)
Citrus Juices, Mild Acid Baths and Other Fluids Normally Corrosive to Steel	23 W/in ² 316 SS (3.6 W/cm ²)	5	VLR10W5	26	(12)
Oil Tempering Baths, Salt Baths, Alkaline Cleaning Solutions, Cyanide Cleaning Solutions	23 W/in ² Steel (3.6 W/cm ²)	5 8	VLS10W5 VLS10W8	26 26	(12) (12)

All units are Stock unless otherwise noted. Availability

Stock: Same day shipment Standard: Five weeks Made-to-Order: Eight weeks

① Standard

Over-the-Side Heaters

Vertical Loop Heater

How to Order

To order a stock vertical loop heater, please specify:

- · Watlow code number
- Volts/watts
- · Options
- Quantity

If our stock units do not meet your application needs, Watlow will provide **made-to-order** units.

Consult your Watlow representative and provide the following information:

- Application
- Volts/watts
- · Watt density
- Dimensions
- · No-heat section
- Heating element diameter and sheath material
- Options
- Quantity

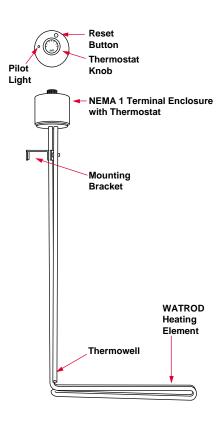
Availability

Stock: Same day shipment **Modified Stock** ①: Five to seven

F.O.B.: Hannibal, Missouri

working days

Standard: Three weeks


Made-to-Order: Five to seven

weeks

Options, complexity and quantity may affect availability and lead times. Consult factory.

① Stock units with catalog options.

Drum

Designed for direct immersion in a standard 55 gallon steel drum, these heaters install easily through the two inch (50 mm) bung hole.

These one to four kilowatt WATROD heaters come prewired with a thermostat, manual reset button and pilot light in a general purpose (NEMA 1) terminal enclosure. This internal tank temperature sensing feature protects against overheating.

Performance Capabilities

- Incoloy® sheath watt densities to 60 W/in² (9.3 W/cm²)
- · Wattages to 9kW
- Voltages to 600V~(ac)

Features and Benefits

- Light-weight, rugged construction resists damage during installation or removal.
- Stainless steel mounting bracket adjusts to varying immersion depths to keep the heating element above settled sludge.

- A 0.475 inch (12 mm) diameter Incoloy® WATROD element has its hairpins repressed (recompacted) after bending to assure MgO density, dielectric strength, heat transfer and life.
- Integral, on-off, manual reset,
 Type 8 thermostat, rated from
 60 to 250°F (15 to 120°C), senses
 process temperature and helps
 protect against overheating.
- Pilot light indicates if heater is cycled on or off.
- 30 inch (760 mm) long no-heat ends form the heater's riser. Noheat ends leave only the element's heated portion submerged.
- General purpose (NEMA 1) terminal enclosure has one inch (25 mm) conduit openings to facilitate wiring.
- UL® and CSA component recognition to 480 and 600V~(ac) maximum under file numbers E52951 and 31388 respectively.

Over-the-Side Heaters

Drum

Applications

- Melting heat sensitive materials such as wax, lard, grease and coconut oil
- Water and water-based solution heating
- Freeze protection

Options

Terminal Enclosures

A general purpose (NEMA 1) terminal enclosure, with integral thermostat, is supplied on all Watlow drum heaters. As an option, moisture resistant (NEMA 4) and explosion resistant (NEMA 7) terminal

enclosures are available to protect both wiring and the thermostat.

To order, add the suffix letter **W** for moisture resistant (NEMA 4) or **E** for explosion resistant (NEMA 7) to the drum heater's base code number.

Wattages and Voltages

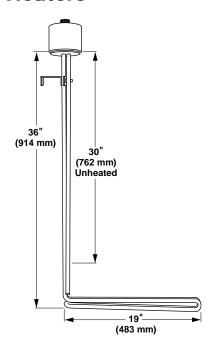
Watlow routinely supplies drum heaters in 120, 240 and 480V~(ac) in one or four kilowatt versions. Watlow will configure heaters with

voltages and wattages outside these parameters.

For more information about this option, consult your Watlow representative.

Three-prong, Twist-Lock® Plug

An optional flexible cord, with threeprong, Twist-lock® plug, provides easy connection to standard 220V~(ac) outlets. The 70 inch (1780 mm) cord is rubber insulated to resist oil, ozone, grease, chemicals, acids, solvents, weather and temperature extremes to 195°F (90°C).


To order, add the suffix letter **CP** to the drum heater base code number.

Application Hints

- Determine recommended sheath material and watt density by using the Supplemental Applications Chart on pages 263 to 266. If unable to determine the correct sheath material and watt density, consult your Watlow representative.
- P Ensure that the element's heated portion is fully immersed at all times. If the element is not sufficiently submerged, it will overheat and become damaged.
- Use drum heaters only in metal drums.

- Do not use the thermostat as an on-off switch. Use a disconnect switch or circuit breaker to cut power prior to servicing.
- Ensure that conduit openings and fittings are compatible with the environment around the heater enclosure.
- Use the adjustable mounting bracket to raise the heating element above the drum's sludge level.
- Periodically remove the heater to inspect and clean the element.
 This maintenance procedure will prolong the heater's life.

Over-the-Side Heaters

Drum Heater

WATROD			Est. Ship.							
Description	kW	120V~(ac) 1-Phase	240V∼(ac) 1-Phase	480V∼(ac) 1-Phase	Weight lbs(kg)					
Applications: Solvents, Water and Water Based Solutions										
32 W/in ²	4		OLDN10S4	OLDN10S11	35 (16)					
Incoloy®										
(5 W/cm ²)										
Application	าร: M	elting Oils,	Lard, Fats, Ta	r						
8 W/in ²	1	OLDN1S1	OLDN10S1		35 (16)					
Incoloy®										
(1.3 W/cm ²)										

All units are stock.

Availability

Stock: Same day shipment

How to Order

To order a stock drum heater, please specify:

- · Watlow code number
- · Volts/watts
- Options
- Quantity

If stock units do not meet your application needs, Watlow will provide **made-to-order** units.

Consult your Watlow representative and provide the following:

- Application
- Volts/watts
- · Watt density
- Dimensions
- No-heat section
- Heating element diameter and sheath material
- Options
- Quantity

Availability

Stock: Same day shipment **Modified Stock** ^①: Five to seven

working days

Standard: Three weeks

Made-to-Order: Five to seven weeks

Options, complexity and quantity may affect availability and lead

times. Consult factory.

① Stock units with catalog options.

Duct Heaters

Quick Ship

On stock chart units:

- Three to five working days on most heaters
- 10 working days on special voltages and/or wattages
- 15 working days on special element lengths

Tubular and Process Assemblies

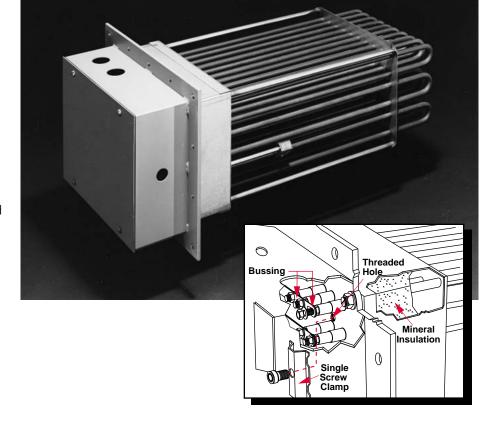
Duct Heaters

Constructed of sturdy 0.430 inch (11 mm) diameter WATROD heating elements mounted to a ¼ inch (6 mm) thick steel flange, duct heaters are easily adapted to many non-pressurized, air-heating systems.

They are easily installed in applications requiring a wide range of temperature vs. air flow combinations.

Watlow duct heaters offer advantages over gas or oil fired and open coil electric units with:

- Installation flexibility no flues or fuel lines.
- 100 percent energy efficient no energy loss up the flue.
- Universal availability of electricity.
- Resistance coil in Incoloy® sheath is protected from corrosive environments.


Performance Capabilities

- Watt densities to 40 W/in² (6.2 W/cm²)
- Recommended process temperatures from -20 to 1200°F (-7 to 650°C)
- · Wattages to 2.2 megawatts
- Voltages to 600V~(ac)

Features and Benefits

- Long life Incoloy® sheath
 resists corrosion/oxidation while
 protecting resistance coils
 against contamination.
- MgO insulation filled elements, compacted to rock hard density maximize dielectric strength, heat transfer and life.
- Field replaceable heating elements permit easy service and reduce downtime. Element change-out is made simple by a single screw clamp.

Incoloy® is a registered trademark of Special Metals Corporation.

- 3½ inches (90 mm) thick mineral insulation keeps wiring cooler and reduces heat loss.
- Vented general purpose (NEMA 1) terminal enclosure ensures cooler terminations.
- A ¼ inch (6 mm) inside diameter thermowell accepts an optional Type J or K thermocouple for accurate sheath temperature sensing.
- Rigid stainless steel supports prevent element sagging or deformation in various mounting positions.
- A ¼ inch (6 mm) thick steel flange, with ¾ inch (10 mm) diameter mounting holes, easily bolts to the duct wall.
- UL® is a registered trademark of Underwriter's Laboratories, Inc.

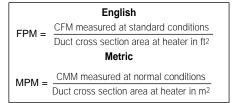
- WATROD hairpins are repressed (recompacted) after bending to assure MgO density that eliminates hot spots and electrical insulation voids.
- Stock heaters feature 6, 12, 18, 24, 30, 36, 42, 48, 54, and 60 elements to meet a wide variety of kW demands.
- One or three phase voltages to meet local power supplies.
- Maximum 48 amps per circuit complies with National Electrical Code (NEC).
- Duct heaters with general purpose enclosures meet UL® and CSA component recognition to 480 and 600V~(ac) maximum respectively—UL® and CSA file numbers are E52951 and 31388.

Duct Heaters

Applications

- Drying ovens
- Autoclaves
- Furnaces
- Load banks

- · Heat treating
- Reheating
- HVAC
- · Paint drying


Choosing a Duct Heater

The following English and metric graphs, shown on pages 413 to 414, will help you to select the correct duct heater. These graphs include: Watt Density vs. Air Temperature/Velocity, Watt Density vs. Sheath Temperature and Pressure Drop vs. Air Velocity.

These graphs, with the quick formulas on this page, along with information specific to your application, will determine the correct duct heater specifications. However, if engineering assistance is needed, contact your Watlow representative.

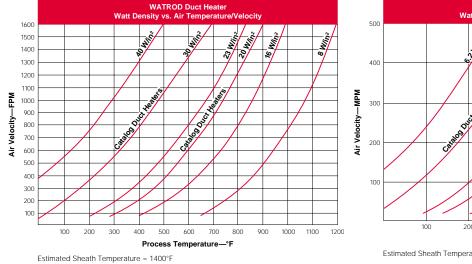
Required Application Information

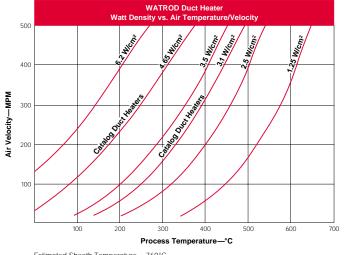
- · Desired outlet air temperature
- · Inlet air temperature
- Delta T—the temperature difference between inlet and desired outlet temperature
- Air volume (CFM/CMM) measured at both inlet temperature and pressure
- Air velocity in feet per minute (FPM); meters per minute (MPM) which equals:
- Minimum duct heater wattage (kW). This can be determined by:

kW = CFM x Delta T (°F) x 1.1(safety factor)
3000

Metric

kW = CMM x Delta T (°C) x 1.1(safety factor)
48

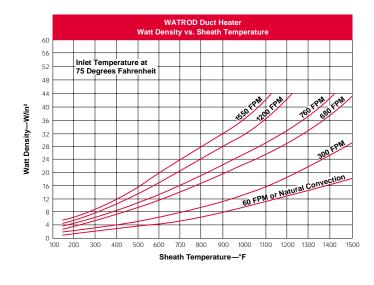

Note: The duct heater, or combination of duct heaters, used for the process should be equal to or exceed the minimum wattage calculation.

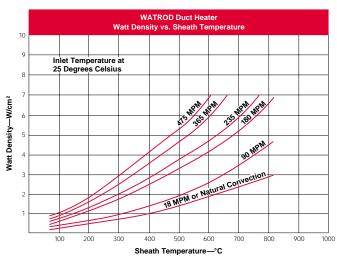

Duct Heaters Watt Density vs. Air Temperature/Velocity

To decide watt density requirements, first determine the desired outlet air temperature and velocity in feet per minute. Then

follow the lines on the graph for velocity and process temperature to the watt density curve's intersecting point. This shows the recommended watt density based on a maximum

sheath temperature of 1400°F (760°C). For longer heater life, lower watt densities should be chosen.

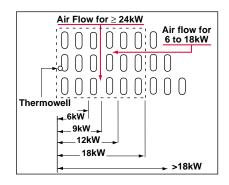




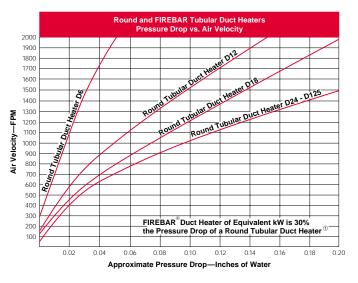
Estimated Sheath Temperature = 760°C

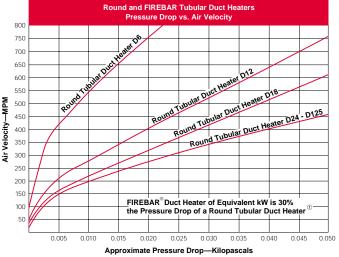
Watt Density vs. Sheath **Temperature**

The Watt Density vs. Sheath Temperature graph shows the air velocity (FPM or MPM) required to operate a WATROD duct heater at specific watt densities or sheath temperatures. Also depicted is the appropriate watt density vs. sheath temperature at a specified air flow.



Duct Heaters


Pressure Drop vs. Air Velocity


The rate at which pressure drops through the duct heater is critical for properly sizing blowers and pumps. *The Pressure Drop vs. Air Velocity* graph gives recommended maximum velocities in feet per minute and meters per minute according to the air velocity and duct heater size.

To determine the pressure drop through the duct heater, follow the air velocity (FPM or MPM) over to the appropriate curve which identifies the duct heater size. Then, take the intersecting point down to the approximate pressure drop value.

Note: Viewing from the element ends—the recommended air flow direction through element bundle changes at > 18kW.

① FIREBAR® flat tubular element duct heaters can be custom designed and built when they enhance your application output or performance. Although duct heaters are not normally constructed with FIREBAR elements, we show the pressure drop reduction using FIREBAR as a distinct advantage.

Options

Sheath Material

Watlow duct heaters can be made with element sheath materials other than Incoloy[®].

Consult your Watlow representative for details and availability.

Wattages/Voltages

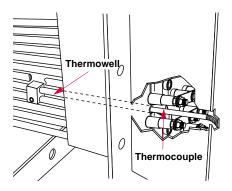
To meet specific application needs, voltage and wattage combinations outside stock product parameters are available.

For more information about this option, consult your Watlow representative.

Duct HeatersOptions

Continued

Terminal Enclosures


In addition to the standard, general purpose (NEMA 1) terminal enclosure, Watlow offers the following optional terminal enclosures to meet specific application requirements:

- Moisture resistant (NEMA 4)
- Stainless steel corrosion resistant (NEMA 4X—consult factory)
- Explosion resistant (NEMA 7—consult factory)
- Dust resistant (NEMA 12)

Thermocouples

Type J or **K** thermocouples, inserted in the thermowell, accurately sense element sheath temperature for over-temperature conditions.

To sense process temperature, sensing element should be located down stream from the duct heater. This will eliminate incorrect sensing caused by radiant heat.

Duct heater thermowell holds thermocouple for sensing sheath temperature.

Thermocouples are supplied with 120 inch (3050 mm) leads (longer lead lengths available). Unless otherwise specified, thermocouples are supplied with temperature ranges detailed on the *Thermocouple Types* chart.

Using a thermocouple requires an appropriate temperature and power control. These must be purchased separately. Watlow offers a wide

variety of temperature and power controls to meet virtually all applications. Temperature controls can be configured to accept process variable inputs, too. Consult your Watlow representative for details.

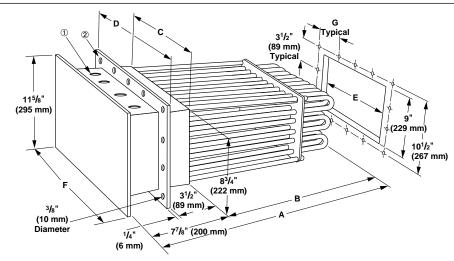
To order a thermocouple, add the appropriate suffix letter to the duct heater's base code number, as indicated on the Build-a-Code chart on page 418.

Thermocouple Types

ASTM Type	Conductor Cl Positive	naracteristics Negative		mended ^① ture Range (°C)
J	Iron	Constantan	0 to 1000	(-20 to 540)
	(Magnetic)	(Non-magnetic)		
K	Chromel®	Alumel®	0 to 2000	(-20 to 1100)
	(Non-magnetic)	(Magnetic)		

① **Type J** and **Type K** thermocouples are rated 32 to 1382°F and 32 to 2282°F (0-750°C and 0-1250°C), respectively. Watlow does not recommend exceeding temperature ranges shown on this chart for the tubular product line.

Application Hints


- Mount duct heaters horizontally to lower enclosure temperatures and promote unit life.
- Orient heating elements as per the air flow illustration on page 414.
- Promote heater life by keeping sheath temperature below the 1400°F (760°C) maximum.

Alumel® and Chromel® are registered trademarks of Hoskins Manufacturing Company.

- Measure process temperature in the outlet stream, away from the heater.
- Maintain wiring integrity by keeping enclosure temperature below 400°F (205°C).
- Thermal cycling can cause terminations to loosen.
 Periodically check and tighten all electrical connections.
- Size power feeder wires in accordance with NEC and other applicable codes.
- Protect employees against electrical shock by properly grounding the unit per NEC specifications.

Duct Heaters

- ① Stock heaters with six and 12 elements have one 1 inch NPT conduit opening. Stock heaters with 18, 24, 30 and 42 elements have two 1 inch NPT conduit openings.
 - Stock heaters with 36, 48, 54 and 60 elements have two 1 inch NPT and two 1½ inch NPT conduit openings.
- ^② All flanges are 12 inches wide.

Duct Heater Dimensions

Dimension	Number of	A Di	mension	B Dir	B Dimension C Dimension D Di		D Din	D Dimension E Dimension		F Dimension		G Dimension			
Reference No.	Elements	in	(mm)	in	(mm)	in	(mm)	in	mm)	in	(mm)	in	(mm)	in	(mm)
1	6	271/8	(708)	20	(508)	2¾	(70)	6½	(165)	3	(76)	5 ¾	(146)	2½	(64)
2	12	27%	(708)	20	(508)	4 3/4	(121)	8 ½	(215)	5	(127)	7 3/4	(197)	31/2	(89)
3	18	27%	(708)	20	(508)	6¾	(171)	10½	(267)	7	(178)	9 ¾	(248)	3⅓	(76)
4	24	271/8	(708)	20	(508)	8¾	(222)	12½	(318)	9	(229)	11 ¾	(298)	23/4	(70)
5	30	27%	(708)	20	(508)	10¾	(273)	14½	(368)	11	(279)	13 ¾	(349)	31/4	(83)
6	36	27%	(708)	20	(508)	12¾	(324)	16½	(419)	13	(330)	15 ¾	(400)	3¾	(95)
7	42	27⅓	(708)	20	(508)	14¾	(375)	18½	(470)	15	(381)	17 ¾	(451)	4 ¼	(108)
8	48	271/8	(708)	20	(508)	16¾	(425)	20½	(521)	17	(432)	19 ¾	(502)	4 ¾	(121)
9	54	27%	(708)	20	(508)	18¾	(476)	22½	(572)	19	(483)	21 ¾	(552)	51/4	(133)
10	60	27%	(708)	20	(508)	20¾	(527)	24½	(622)	21	(533)	23 ¾	(603)	5¾	(146)
11	60	32%	(835)	25	(635)	20¾	(527)	24½	(622)	21	(533)	23 ¾	(603)	5¾	(146)
12	60	40%	(1026)	32½	(826)	20¾	(527)	24½	(622)	21	(533)	23 ¾	(603)	5¾	(146)
13	60	49¾	(1254)	41½	(1054)	20¾	(527)	24½	(622)	21	(533)	23 ¾	(603)	5¾	(146)

20 W/in² (3.1 W/cm²)

	Dimension	Number				Code	No.				Est. Ship.
kW	Reference No.	of Elements	240V~(ac) 1-Phase	# of Circ.	240V~(ac) 3-Phase	# of Circ.	480V~(ac) 1-Phase	# of Circ.	480V~(ac) 3-Phase	# of Circ.	Weight Ibs (kg)
6	1	6	D6S10	1	D6S3	1	D6S11	1	D6S5	1	50 (23)
12	2	12	D12S10	1	D12S3	1	D12S11	1	D12S5	1	55 (25)
18	3	18	D18S10	2	D18S3	1	D18S11	1	D18S5	1	65 (30)
24	4	24	D24S10	2	D24S3	2	D24S11	1	D24S5	1	95 (43)
30	5	30			D30S3	2	D30S11	2	D30S5	1	120 (55)
36	6	36			D36S3	2	D36S11	2	D36S5	1	135 (62)
42	7	42			D42S3	2	D42S11	2	D42S5	2	155 (71)
48	8	48			D48S3	4	D48S11	2	D48S5	2	195 (89)
54	9	54			D54S3	3	D54S11	3	D54S5	2	205 (93)
60	10	60			D60S3	4	D60S11	4	D60S5	2	235 (107)
75	11	60			D75S32	4	D75S11	4	D75S5	2	260 (118)
100	12	60							D100S52	4	290 (132)
125	13	60							D125S5@	4	310 (141)

All duct heaters are Assembly Stock unless otherwise noted.

② Standard

Availability

Assembly Stock: Three to five working days Standard: 10 working days

Truck Shipment only

Duct Heaters

30 W/in² (4.7 W/cm²)

	Dimension	Number				Code	e No.				Est. Ship.
kW	Reference No.	of Elements	240V∼(ac) 1-Phase	# of Circ.	240V~(ac) 3-Phase	# of Circ.	480V∼(ac) 1-Phase	# of Circ.	480V∼(ac) 3-Phase	# of Circ.	Weight Ibs (kg)
9	1	6	D6SX10	1	D6SX3	1	D6SX11	1	D6SX5	1	50 (23)
18	2	12	D12SX10	2	D12SX3	1	D12SX11	1	D12SX5	1	55 (25)
27	3	18	D18SX10	3	D18SX3	2	D18SX11	2	D18SX5	1	65 (30)
36	4	24	D24SX10	4	D24SX3	2	D24SX11	2	D24SX5	1	95 (43)
45	5	30			D30SX3	5	D30SX11	2	D30SX5	2	120 (55)
54	6	36			D36SX3	3	D36SX11	3	D36SX5	2	135 (62)
63	7	42			D42SX3	7	D42SX11	3	D42SX5	2	155 (71)
72	8	48			D48SX3	4	D48SX11	4	D48SX5	2	195 (89)
81	9	54			D54SX3	6	D54SX11	6	D54SX5	3	205 (93)
90	10	60			D60SX3	5	D60SX11	4	D60SX5	4	235 (107)
115	11	60			D75SX32	10	D75SX11	5	D75SX5	4	260 (118)
150	12	60							D100SX52	4	290 (132)
190	13	60							D125SX52	5	310 (141)

Replacement Elements

Replaceable heating elements provide easy field service and reduce downtime. Element change-out is made simple by a single screw clamp.

To order replacement elements, specify the replacement element **code number** (from the table) that corresponds to the original Watlow duct heater code number. Then specify quantity.

All duct heaters are Assembly Stock unless otherwise noted.

Availability
Assembly Stock: Three to five working days
Standard: 10 working days
Truck Shipment only

Replacement Elements

Original Duct Heater Code Numbers		cement nent Watts	Dime	A ension (mm)	Replacement Element Code No.	Availability		Net ight (kg)
20 W/in ² (3.1 W/d	cm²)							
D6S3 to D60S3	240	1000	27%	(708)	D6240	Stock	1.0	(0.5)
D6S5 to D60S5	480	1000	27%	(708)	D6480	Stock	1.0	(0.5)
D75S3	240	1250	32%	(835)	D75240	Standard	1.0	(0.5)
D75S5	480	1250	32%	(835)	D75480	Stock	1.0	(0.5)
D100S5	480	1667	40%	(1026)	D100480	Stock	1.4	(0.7)
D125S5	480	2083	49 %	(1254)	D125480	Stock	1.7	(8.0)
30 W/in ² (4.7 W/d	cm²)							
D6SX3 to D60SX3	240	1500	27%	(708)	D6X240	Stock	1.0	(0.5)
D6SX5 to D60SX5	480	1500	27%	(708)	D6X480	Stock	1.0	(0.5)
D75SX3	240	1917	32%	(835)	D75X240	Standard	1.0	(0.5)
D75SX5	480	1917	32%	(835)	D75X480	Stock	1.0	(0.5)
D100SX5	480	2500	40%	(1026)	D100X480	Stock	1.4	(0.7)
D125SX5	480	3167	49%	(1254)	D125X480	Stock	1.7	(8.0)

2 Standard

Duct Heaters

Build-a-Code

Duct Heater Base Code Number —————		
(Includes general purpose (NEMA 1) enclosure)		
Terminal Enclosure Type W = Moisture resistant (NEMA 4) D = Dust resistant (NEMA 12)		
Thermocouple Sensor J = Type J		
K = Type K		

How to Order

To order stock duct heaters, please specify:

- Watlow code number
- Volts/watts
- Phase
- Options
- Quantity

If our stock units do not meet your application needs, Watlow can provide a made-to-order unit. For **made-to-order** units please consult your Watlow representative and provide the following information:

- Application (inlet and outlet air temperature, CFM/CMM, duct size and mounting orientation)
- Volts/watts
- Phase
- Number of circuits
- · Watt density
- Number of heating elements
- Sheath material
- Element ('B' dimension) length
- Mounting flange material and mounting hole layout
- · Insulation thickness and material
- · Terminal enclosure type
- · Options
- Quantity

Availability

Assembly Stock: Three to five working days

Modified Stock®: Five to seven

working days

Standard: 10 working days

Made-to-Order: Five to seven weeks

F.O.B.: Hannibal, Missouri

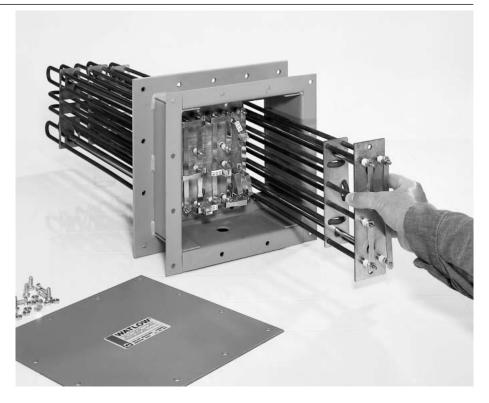
Replacement Elements Only

Stock: Same day shipment **Standard**: 10 working days **Made-to-Order**: Four weeks

Options, complexity and quantity may affect availability and lead times. Consult factory.

① Stock or Assembly Stock units with catalog options.

Modular Duct Heater


Watlow has developed a new line of process air heaters that offer improved performance and increased versatility in medium to low temperature applications.

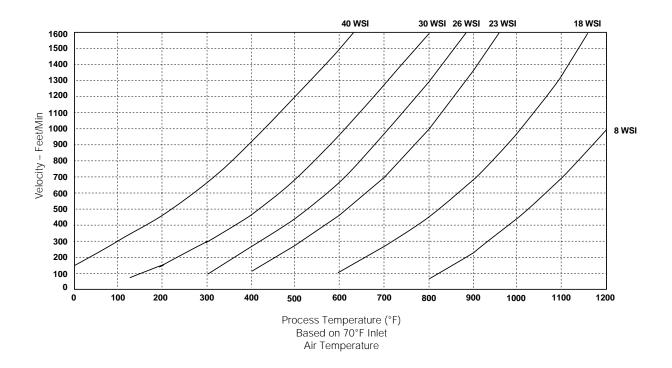
The new duct heaters are modular and consist of two parts. The first is a 6kW heater available in either 240 or 480 volts, single or three phase.

The second part of the heater consists of the electrical housing that protects each module's termination area and a main flange that bolts into the user's ductwork. The heater modules are installed in the housing and main flange via rectangular slots in the main flange. The range of modules that can be accommodated in various duct heater assemblies, range from 1-10 modules. A range of 6-60kW, in 6kW increments is achieved.

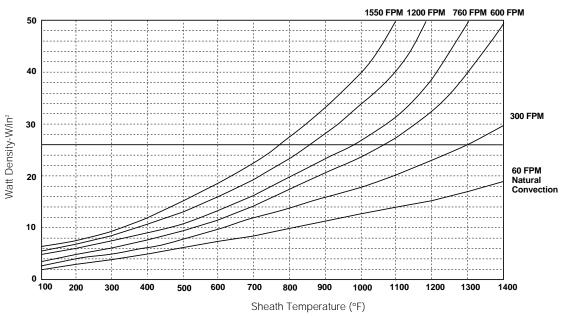
The new design of the modular duct heater offers increased reliability. The individual modules are removable through the housing of the assembly, which eliminates the need to pull the complete heater from the ductwork. This reduces downtime and costs because the heating elements can be replaced individually.

Performance improvements include quicker response time and reduced infiltration from the air stream being heated into the electrical enclosure.

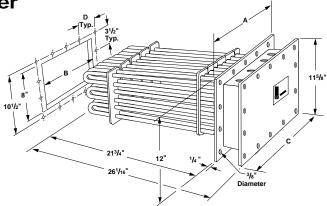
Features and Benefits


- Individual modules removable through housing reduces downtime for replacement of module.
- 27 percent reduction in heat-up time as compared to traditional 0.430 inch diameter duct heater elements result in a faster response time.
- Smaller diameter elements (0.315 inch) result in a 25 percent lower energy usage on initial heat-up.
- 31 percent lighter weight than traditional tubular duct heaters reduces shipping costs and increases worker safety.
- Greater free cross sectional area results in lower pressure drop.
- Improved seal between element and electrical housing results in lower electrical housing temperature.
- Flexible module wiring allows user to sequentially stage modules.

Applications


- Low temperature ovens
- · Parts drying
- Semiconductor clean room environmental heating
- · Plastic curing
- Load banks
- · Heated air knives
- Food dehydration
- · Heat shrink tunnels

Modular Duct Heater


Velocity vs. Process Temperature

Watt Density vs. Sheath Temperature

Modular Duct Heater

Application: Air Heating – Maximum outlet temperature – 750°F

Watt				No. of	No. of	Est.					nsions			
Density	kW	Volts	Phase	Circuits	Modules	Shipping Wt.	Availability	Code No.	in.					
W/in ²						lbs			Α	В	С	D		
26	6	240	1	1	1	35	Assy. Stk	MDH6SI0	6.50	2.50	5.75	2.50		
26	6	240	3	1	1	35	Assy. Stk	MDH6S3	6.50	2.50	5.75	2.50		
26	6	480	1	1	1	35	Assy. Stk.	MDH6S11	6.50	2.50	5.75	2.50		
26	6	480	3	1	1	35	Assy. Stk.	MDH6S5	6.50	2.50	5.75	2.50		
26	12	240	1	2	2	39	Assy. Stk.	MDH12SI0	8.50	4.75	7.75	3.50		
26	12	240	3	1	2	39	Assy. Stk.	MDH12S3	8.50	4.75	7.75	3.50		
26	12	480	1	1	2	39	Assy. Stk.	MDH12S11	8.50	4.75	7.75	3.50		
26	12	480	3	1	2	39	Assy. Stk.	MDH12S5	8.50	4.75	7.75	3.50		
26	18	240	1	3	3	46	Assy. Stk.	MDH18SI0	10.50	7.00	9.75	3.00		
26	18	240	3	1	3	46	Assy. Stk.	MDH18S3	10.50	7.00	9.75	3.00		
26	18	480	1	1	3	46	Assy. Stk.	MDH18S11	10.50	7.00	9.75	3.00		
26	18	480	3	1	3	46	Assy. Stk.	MDH18S5	10.50	7.00	9.75	3.00		
26	24	240	1	4	4	67	Assy. Stk.	MDH24S10	12.50	9.25	11.75	2.75		
26	24	240	3	2	4	67	Assy. Stk.	MDH24S3	12.50	9.25	11.75	2.75		
26	24	480	1	2	4	67	Assy. Stk.	MDH24S11	12.50	9.25	11.75	2.75		
26	24	480	3	1	4	67	Assy. Stk.	MDH24S5	12.50	9.25	11.75	2.75		
26	30	240	3	2	5	84	Assy. Stk.	MDH30S3	15.75	11.50	15.00	3.56		
26	30	480	1	2	5	84	Assy. Stk.	MDH30S11	15.75	11.50	15.00	3.56		
26	30	480	3	1	5	84	Assy. Stk.	MDH30S5	15.75	11.50	15.00	3.56		
26	36	240	3	2	6	95	Assy. Stk.	MDH36S3	18.00	13.75	17.25	4.13		
26	36	480	1	2	6	95	Assy. Stk.	MDH36S11	18.00	13.75	17.25	4.13		
26	36	480	3	1	6	95	Assy. Stk.	MDH36S5	18.00	13.75	17.25	4.13		
26	42	240	3	3	7	109	Assy. Stk.	MDH42S3	20.25	16.00	19.50	4.69		
26 26	42 42	480 480	1 3	3 2	7 7	109 109	Assy. Stk.	MDH42S11	20.25 20.25	16.00	19.50 19.50	4.69 4.69		
							Assy. Stk	MDH42S5		16.00				
26	48	240	3	4	8	137	Assy. Stk.	MDH48S3	22.50	18.25	21.75	5.25		
26	48	480	1	3	8	137	Assy. Stk.	MDH48S11	22.50	18.25	21.75	5.25		
26 26	48 54	480 240	3 3	2 3	8 9	137 144	Assy. Stk. Assy. Stk.	MDH48S5 MDH54S3	22.50 24.75	18.25 20.50	21.75 24.00	5.25 5.81		
26 26	54 54	480	1	3	9	144	Assy. Stk. Assy. Stk.	MDH54S11	24.75	20.50	24.00	5.81		
	_			-	-		,							
26 26	54 60	480 240	3	2 4	9 10	144 165	Assy. Stk. Assy. Stk.	MDH54S5 MDH60S3	24.75 27.00	20.50 22.75	24.00 26.25	5.81 6.38		
26 26	60	480	1	4	10	165	Assy. Stk. Assy. Stk.	MDH60S11	27.00	22.75	26.25	6.38		
26	60	480	3	2	10	165	Assy. Stk.	MDH60S5	27.00	22.75	26.25	6.38		
		.50					, 100y . Olik.			, 0		0.00		

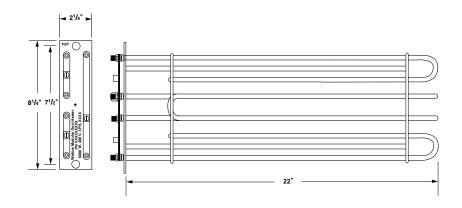
Options include individual modules with optional NEMA1 housing, high temperature thermocouple kit and blank flange modules.

Modular duct heaters with 1 and 2 modules have conduit openings for 1-1 inch NPT fitting.

Modular duct heaters with 3,4,5, and 7 modules have conduit openings for 2-1 inch NPT fittings.

Modular duct heaters with **6,8,9**, and **10** modules have conduit openings for **2**-1 ¼ inch NPT and **2**-1 inch NPT fittings.

Modular Duct Heater


Individual Module Dimensions

Specifications

- Module rating 240 or 480V~(ac), 6kW, three phase or one phase
- Watt Density 26 W/in²
- Elements 0.315 inch dia. Incoloy® elements
- High-limit thermocouple installed by drilling premarked hole in flange
- 6-60kW range when mounted in duct heater assembly

Application Information

- Maximum sheath temperature
 1200°F
- Maximum outlet temperature
 750°F

Options

Terminal Enclosures

Terminal enclosures are available in NEMA 1 and 4 configurations.

High-Limit Thermocouples

High-limit thermocouples can be supplied on specified modules or shipped as a kit. Available thermocouples are Types J and K.

Blank Module Covers

Module covers are available for covering blank slots on the main flange. This allows for adding heater module at a later time to allow higher wattage outputs.

Watlow Code Number	Description						
Replacement Mo	odules						
M63	6kW, 240 volts, 3 phase						
M610	6kW, 240 volts, 1 phase						
M65	6kW, 480 volts, 3 phase 6kW, 480 volts, 1 phase						
M611							
High Limit Therr	nocouple Kits						
MTCJ	Type J (0-1000°F)						
MTCK	Type K (0-2000°F)						
Blank Module Covers							
MBLK	Cover slots in main flange						

Availability

- Assembly Stock: Three to five working days
- **Made-to-Order**: Eight weeks Consult factory for more details.

Thermostats and Accessories

Thermostats regulate temperature in non-critical applications. They sense temperature, within a preset range and cycle heaters on and off to maintain the set point.

Thermostats may be mounted inside a terminal enclosure or remote mounted (separate from the heater assembly). If using a remote mounted thermostat, be sure to order sufficient capillary tube length to permit installation.

All Watlow thermostats are normally closed circuit and either single pole, single throw (SPST) or double pole, single throw (DPST). They can be used with or without an enclosure.

Thermostat selection should be based on temperature range, capillary tube length and sensor bulb size (diameter/length).

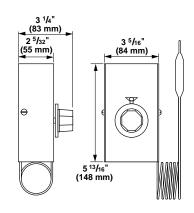
Remote Mount Thermostat

Remote mounted thermostat assemblies can be supplied with the following enclosures:

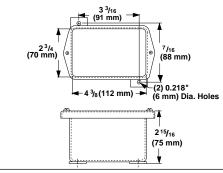
- General purpose (NEMA 1)
- Moisture resistant (NEMA 4)
- Explosion resistant (NEMA 7)
- Explosion/moisture resistant (NEMA 7/4)
- Dust resistant (NEMA 12)

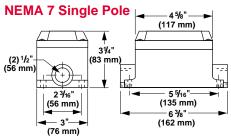
Pilot Light

An optional pilot light gives visual indication whether the power supplied to the heating element(s) is on or off.

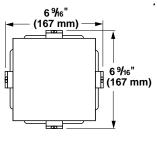

To order, please specify suffix code **PL11**.

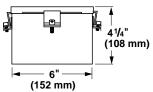
Thermostat Conversion Kits


Kits are available to convert a heater's general purpose (NEMA 1) terminal enclosure to accept either a single or double pole thermostat.

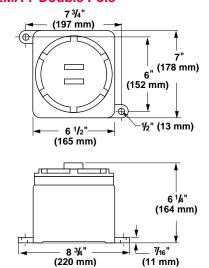

Thermostats with Enclosures

NEMA 1 Single and Double Pole




NEMA 4 and 12 Single Pole

NEMA 4 and 12 Double Pole



The kit contains all the necessary parts to change out the existing terminal enclosure cover and mount the thermostat inside. These are hardware and wiring kits only.

Single pole conversion kit covers 1, 1¼, 2 and 2½ inch NPT screw plugs. To order, specify code **K492-000-35-(thermostat type)**.

NEMA 7 Double Pole

Double pole conversion kit covers 2 and 2½ inch NPT screw plugs. To order, specify code **K492-000-34-(thermostat type)**.

Celsius Dial Scale

Thermostats are shipped with Fahrenheit (°F) dial scales. If your application requires a Celsius (°C) scale, order the optional dial face.

To order, specify code **CD**. Scale will match thermostat temperature range.

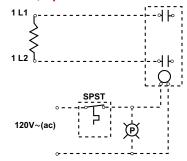
Thermostats and Accessories

Application Hints

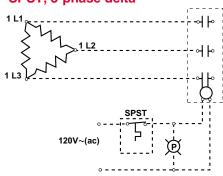
- Locate the thermostat where ambient temperatures do not exceed 150°F (65°C).
- Mount the thermostat in an enclosure that is compatible with the surrounding environment.
- Immerse the entire sensing bulb in the media being heated.
- Make sure the sensing bulb is mounted away from the heating element(s) to negate any undue influence on the sensing bulb's temperature "reading."
- Keep the capillary tube insulated from electrical connections.
- Do not use a thermostat for highaccuracy temperature sensing. Use an appropriate thermocouple, RTD or thermistor and temperature control.
- Do not use thermostats as a primary power switching device. Use a disconnect switch or

- circuit breaker to cut power when servicing.
- Interconnect the thermostat to the heater only if:
 - The heater has one circuit
 - The heater's ampere draw is lower than the thermostat's rated ampacity at prescribed voltage.
- Interconnect either a single or double pole thermostat with a single-phase heater when the supply voltage does not exceed 277V~(ac) for SPST or 480V~(ac) for DPST.
- Only interconnect three-phase delta heaters to DPST thermostats.
- Use a single pole thermostat for pilot duty where the thermostat is not interconnected with the heater, or heater exceeds the volt/amp rating.

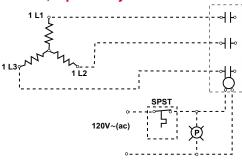
Warning


Do not use thermostats for high-limit sheath protection. Thermostats fail in a closed circuit mode and will not cut power to the heaters. Limit control should be provided by an isolated, redundant sensor and control system of the appropriate type, design and installation.

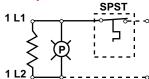
Thermostats are precalibrated at the factory. No adjustment, other than selecting the desired operating temperature, is required. All wiring should be performed by qualified personnel and comply with the National Electrical Code and other applicable state and local codes.


To help assure you select the correct thermostat, as well as install and wire it properly, we have put together a few helpful hints. Schematics are provided for interconnecting thermostats to single- and three-phase heaters.

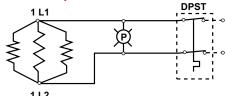
Pilot Duty Wiring


SPST,1-phase

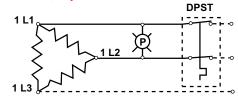
SPST, 3-phase delta



SPST, 3-phase wye



Interconnected Wiring


SPST, 1-phase

DPST, 1-phase

DPST, 3-phase delta

F.O.B.: Hannibal, Missouri

Tubular and Process Assemblies

Thermostats and Accessories

Thermostat

Control Mode	Туре	Tempe Rar	nge		rential	L	Ampa ine V	oltag	е	Bull Diame	ter	Len	ulb igth	Le	oillary ngth	Terminal Type	Code No.	W	t. Net eight
		°F	(°C)	°F	(°C)	120	240	277	480	inch (r	nm)	inch	(mm)	inch	n (mm)			lbs	s (kg)
On-off	Single	30-110	(0-40)	8	(0)	25	25	22	_	0.250	(6)	4 ¾	(121)	18	(455)		1	1	(0.4)
Temp	Pole	30-250	(0-120)	15	(8)	25	25	22	_	0.250	(6)	3 ¼	(85)	18	(455)	#12 AWG	2	1	(0.4)
Control	Single	30-250	(0-120)	15	(8)	25	25	22	_	0.250	(6)	3 ¼	(85)	84	(2135)	Stranded	2A	1	(0.4)
	Throw	175-550	(80-290)	26	(14)	25	25	22	_	0.250	(6)	3 %	(85)	18	(455)	Leads	3	1	(0.4)
	(SPST)	175-550	(80-290)	26	(14)	25	25	22	_	0.250	(6)	2 ¾	(70)	84	(2135)		3A	1	(0.4)
		300-700	(150-350)	12	(7)	25	25	_	_	0.375	(10)	3 ¾	(95)	60	(1525)		10	1	(0.4)
		60-160	(15-70)	19	(10)	30	30	30	20	0.250	(6)	4 %	(110)	14	(355)	#8-32	12A	1	(0.4)
	Double	30-110	(0-40)	12	(7)	30	30	30	21	0.375	(10)	6 1/4	(160)	36	(915)		4	2	(0.9)
	Pole	60-250	(15-120)	12	(7)	30	30	30	21	0.375	(10)	4 ½	(115)	48	(1220)	#10-32	5	2	(0.9)
	Single	60-250	(15-120)	12	(7)	30	30	30	21	0.250	(6)	6 ½	(165)	48	(1220)	Screw Lug	5A	2	(0.9)
	Throw	100-550	(40-290)	22	(12)	30	30	30	21	0.375	(10)	3 %	(100)	48	(1220)		7	2	(0.9)
	(DPST)	100-550	(40-290)	22	(12)	30	30	30	21	0.250	(6)	7 ⅓6	(179)	48	(1220)		7A	2	(0.9)
On-off	(DPST)	60-250	(15-120)	12	(7)	30	30	30	_	0.250	(6)	6 ½	(165)	48	(1220)	#10-32	8	2	(0.9)
with		100-550	(40-290)	22	(12)	30	30	30	_	0.188	(8)	12	(305)	48	(1220)	Screw Lug	9	2	(0.9)
Manual	(SPST)	350 ^①	(180)	_		30	30	20	_	0.250	(6)	3 ½	(90)	36	(915)	#10-32	11	1	(0.4)
Reset			. ,													Screw Lug			

① Fixed temperature setting

Availability

Stock: Same day shipment

How to Order
Thermostat Code Number
(See stock chart above)
Enclosure (Remote Mount Only)
S = General purpose (NEMA 1)
W = Moisture resistant (NEMA 4)
E = Explosion resistant (NEMA 7)
E/W = Explosion/moisture resistant (NEMA 7/4)
D = Dust resistant (NEMA 12)
Options —

CD = Celsius dial scale
CB = Chrome bezel

LTB = Liquid-tight brass fitting (%"-18 NPT)

PL11 = Pilot Light

Cross-Reference For	Order With
Replacement Thermostat	This Number
202-0-21-1 (small knob)	1
202-0-21-2 (small knob)	202-0-21-2MB
202-0-21-4	2
202-0-21-5	2A
202-0-21-3	3
202-0-21-8 (small knob)	202-0-21-8M
202-0-21-6	3A
202-0-4-2	4
202-0-4-6	5
202-0-4-17	5A
202-0-4-5	7
202-0-4-16	7A
202-0-3-1	8
202-0-3-3	9
202-0-1-13	10
202-0-29-2	11
202-0-41-2 (small knob)	12A

If you only have the thermostat code number use this cross-reference chart.

Availability

Thermostats

Stock: Same day shipment *Remote Mount Thermostats*

Stock: Same day shipment **Assembly Stock**: Three to five

working days

Modified Stock②: Three to five working days

Standard: Eight to 10 working days Options, complexity and quantity may affect availability and lead

times. Consult factory.

Stock or Assembly Stock units with catalog options.

Thermostats and Accessories

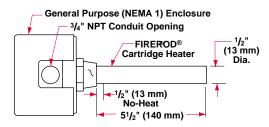
Low Liquid Level Sensor

The Watlow low liquid level sensor can protect a heating system by sensing when a liquid drops below a predetermined level. This is accomplished by locating the sensor at the minimum desired liquid level in the tank or vessel. The sensor's ASTM Type J thermocouple output can be connected to a variety of controls, alarms and limit protection devices.

To provide an additional margin of protection, the Type J thermocouple makes this low liquid level sensor respond considerably faster than conventional capillary bulb thermostats.

To order, specify code number **BCN5J1SJ**.

Application Hints


 Only use sensor in nonflammable liquids that are compatible with the Incoloy® sheath and 304 stainless steel screw plug.

- Application should tolerate sheath temperature at limit set point.
- The time delay between the low liquid level condition on-set, and the sensor's ability to signal the control device should be adequate to protect the heater(s).
 See Installation and Maintenance Instructions for details.

Controller Recommendation

Use Watlow Safety Limit
 Temperature Control Series 142
 (Code number 142A-3605-1300).
 This controller features compact sub-panel mounting and is sealed against ambient environment.
 UL® recognized for limit protection (UL 991, "Tests For Safety-Related Controls Employing Solid State Devices").

Controller supplied by Watlow's Winona, Minnesota facility.

F.O.B.: Hannibal, Missouri

Specifications

Screw plug: 1" NPT

Plug material: 304 stainless steel

Sheath material: Incoloy®

Watt density: 13 W/in² (2 W/cm²)

Watts: 100

Volts: 120V~(ac)

Immersed length: 5½ inch (140 mm)

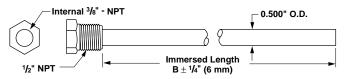
Thermocouple: ASTM Type J Est. ship. wt.: 2 lbs (1 kg)

Availability

Stock: Same day shipment **Modified Stock**^①: Five to seven

working days

Made-to-Order: Four to six weeks Options, complexity and quantity may affect availability and lead times. Consult factory.


① Stock units with catalog options.

Protective Wells

Protective wells isolate and protect thermostat bulbs and other temperature sensors (thermocouples, RTDs or thermistors). They allow inserting the sensing element sufficiently into the media being heated without being damaged.

Steel or stainless steel protective wells are available in three lengths. They are supplied with ½ inch NPT mounting and ¾ inch-18 NPT internal thread for mating to a liquid-tight bushing (LTB).

All units are stock. To order, specify the appropriate code number from the stock table.

Protective Wells

Plug and Thermowell		nersed nension	Code No.	Est. Ship. Weight			
Material	inch	(mm)		lb	(kg)		
	12	(305)	PWS12	1	(0.5)		
Steel	24	(610)	PWS24	2	(1.0)		
	36	(915)	PWS36	2	(1.0)		
Stainless	12	(305)	PWSS12	1	(0.5)		
Steel	24	(610)	PWSS24	2	(1.0)		
	36	(915)	PWSS36	2	(1.0)		

Availability

Stock: Same day shipment **Modified Stock**@: Five to seven

working days

Made-to-Order: Three weeks

Options, complexity and quantity may affect availability and lead-times. Consult factory.

② Stock units with catalog options.